Abstract:
There is provided a DSR speaker comprising at least a central moving element, a plurality of peripheral flexure benders, each flexure bender comprising at least a pair of electrodes and at least a piezoelectric material layer, the flexure benders being connected to said moving element and being configured to move said moving element along an axis perpendicular to a moving element surface, in response to an electrical stimulus applied to said electrodes, in order to produce sound, and at least a mechanical stopper which is configured to limit the motion of said moving element. Various manufacturing methods are also described.
Abstract:
A system includes an apparatus and a processor. The apparatus includes a set of actuator elements that move between two positions. Each actuator element is comprised in: exactly one first subset out of a plurality of non-empty first subsets and exactly one second subset out of a plurality of non-empty second subsets. The processor is configured to generate one or more control commands for a group of subsets out of the first and the second pluralities of subsets in response to a number of moving elements which, if released from the first extreme position during a second sampling cycle, enables production by the apparatus during the second sampling cycle of a sound.
Abstract:
The present disclosure provides a method for testing an apparatus which comprises a set of operational subunits each comprising a moving element, wherein the moving elements move between respective first and second extreme positions, the method comprising: transferring to the apparatus stabilization control commands; transferring to the apparatus first latching-commands for latching to the first extreme position a candidate moving element which is a moving element of a candidate operational subunit; when the first latching control commands are in effect, measuring a first output frequency of an oscillator whose output is coupled to the candidate operational subunit in an electrical coupling setup which causes the output frequency of the oscillator to depend on positions of a plurality of moving elements which comprises the candidate moving element; and based on the first output frequency determining a state of the candidate operational subunit.
Abstract:
A microelectromechanical apparatus for generating a physical effect, including an array of moving elements, each coupled to a mechanical support by at least one flexure which is associated with at least one piezoelectric member which is operable to be strained by an electrical field applied to the piezoelectric member, thereby flexing the flexure to which the piezoelectric member is coupled; an electrical wiring, including a group of electrodes, wherein each electrode out of the group of electrodes is coupled to at least one of the piezoelectric members; wherein the electrical wiring is operable to concurrently transfer different sequences of electric fields to different piezoelectric members, thereby controllably inducing movement of moving elements of the array for creating the physical effect; and a motion restriction mechanism for maintaining a maximal motion distance for each of the moving elements when actuated via the corresponding flexure and piezoelectric member.
Abstract:
According to some embodiments there is provided a sound and detection system comprising at least a digital sound reconstruction speaker apparatus, comprising a plurality of pressure-pulse producing elements, and at least a controlling unit configured to control the actuation of the plurality of pressure-pulse producing elements, so as to produce at least an ultrasonic beam directed towards space during at least a first time interval, for the calculation of at least the position of at least part of an object present in space based on the sensing of at least ultrasonic sound waves reflected by said part of the object, and control the actuation of the plurality of pressure-pulse producing elements, so as to produce audible content during at least a second time interval. Various other systems, methods and applications are described.
Abstract:
A microelectromechanical system, including a first element and a second element, the first element having a first conductive surface facing a second conductive surface of the second element; wherein at least one of the first element and the second element is operable to constrainedly move nearer and farther from the other element; and at least one insulating separating member which is operable to mechanically maintain a separation between the first surface and the second surface, wherein a minimal distance between a first projection of a first contact area of the insulating separating member and a second projection of a second contact area of the insulating separating member is larger than a minimal separation maintained by the insulating separating member between the first element and the second element.
Abstract:
Apparatus for generating a target physical effect, at least one attribute of which corresponds to at least one characteristic of a digital input signal sampled periodically, the apparatus comprising a multiplicity of electrostatic actuator elements, each comprising a moving element moving between first and second electrodes, the multiplicity of electrostatic actuator elements including Nr first subsets (R-subsets) of actuator elements and Nc second subsets (C-subsets) of actuator elements, wherein a first partitioning of the multiplicity of actuator elements yields the Nr first subsets (R-subsets) and a second partitioning of the multiplicity of actuator elements yields the Nc second subsets (C-subsets); a first plurality of Nr electrical connections (R-wires) interconnecting the moving elements of actuator elements in each R-subset, such that the moving element of any actuator element in each individual R-subset is electrically connected to the moving elements of all other actuator elements in the individual R-subset, and electrically isolated from the moving elements of all actuator elements not in the individual R-subset; a second plurality of Nc electrical connections (A-wires) interconnecting the first electrodes of actuator elements in each C-subset, such that the first electrode of any actuator element in each individual C-subset is electrically connected to the first electrode of all other actuator elements in the individual C-subset, and electrically isolated from all actuator elements not in the individual C-subset; a third plurality of Nc electrical connections (B-wires) interconnecting the second electrodes of actuator elements in each C-subset, such that the second electrode of any actuator element in each individual C-subset is electrically connected to the second electrode of all other actuator elements in the individual C-subset, and electrically isolated from all actuator elements not in the individual C-subset; and a controller electrically.
Abstract:
Actuator apparatus for generating a physical effect, at least one attribute of which corresponds to at least one characteristic of a digital input signal sampled periodically in accordance with a sampling clock, the apparatus comprising at least one actuator device, each actuator device including an array of moving elements, wherein each individual moving element is operative to be constrained to travel alternately back and forth along a respective axis responsive to an individual first electrostatic force operative thereupon, wherein each moving element has an at-rest position and is driven away from its at rest position solely by the first electrostatic force; and at least one electrode operative to apply a controlled temporal sequence of potential differences with at least one individual moving element from among the array of moving elements thereby to selectably generate the first electrostatic force; and a controller operative to receive the digital input signal and to control at least one of the at least one electrode and the individual moving element to apply the sequence of potential differences.
Abstract:
There is provided a piezo-electric actuator comprising an assembly comprising a first electrode, a second electrode, and at least one piezoelectric layer located between said first electrode and said second electrode, wherein at least one of the first electrode and the second electrode is split into at least two different sub-electrodes, wherein at least part of the assembly is configured to move along an axis perpendicular to a surface of the assembly, in response to an electrical stimulus applied to at least one of said first and second electrodes.
Abstract:
A system which controls an apparatus which comprises a set of actuator elements, each comprising a moving element which moves between first and second extreme positions, wherein each actuator element of the set is comprised in: (a) exactly one first subset out of a plurality of non-empty first subsets (R-subsets) of the set of actuator elements; and (b) exactly one second subset out of a plurality of non-empty second subsets (C-subsets) of the set of actuator elements.