摘要:
In a physical vapor transport method and system, a growth chamber charged with source material and a seed crystal in spaced relation is provided. At least one capsule having at least one capillary extending between an interior thereof and an exterior thereof, wherein the interior of the capsule is charged with a dopant, is also provided. Each capsule is installed in the growth chamber. Through a growth reaction carried out in the growth chamber following installation of each capsule therein, a crystal is formed on the seed crystal using the source material, wherein the formed crystal is doped with the dopant.
摘要:
A physical vapor transport system includes a growth chamber charged with source material and a seed crystal in spaced relation, and at least one capsule having at least one capillary extending between an interior thereof and an exterior thereof, wherein the interior of the capsule is charged with a dopant. Each capsule is installed in the growth chamber. Through a growth reaction carried out in the growth chamber following installation of each capsule therein, a crystal is formed on the seed crystal using the source material, wherein the formed crystal is doped with the dopant.
摘要:
The invention relates to substrates of semi-insulating silicon carbide used for semiconductor devices and a method for making the same. The substrates have a resistivity above 106 Ohm-cm, and preferably above 108 Ohm-cm, and most preferably above 109 Ohm-cm, and a capacitance below 5 pF/mm2 and preferably below 1 pF/mm2. The electrical properties of the substrates are controlled by a small amount of added deep level impurity, large enough in concentration to dominate the electrical behavior, but small enough to avoid structural defects. The substrates have concentrations of unintentional background impurities, including shallow donors and acceptors, purposely reduced to below 5·1016 cm−3, and preferably to below 1·1016 cm−3, and the concentration of deep level impurity is higher, and preferably at least two times higher, than the difference between the concentrations of shallow acceptors and shallow donors. The deep level impurity comprises one of selected metals from the periodic groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB. Vanadium is a preferred deep level element. In addition to controlling the resistivity and capacitance, a further advantage of the invention is an increase in electrical uniformity over the entire crystal and reduction in the density of crystal defects.
摘要:
A physical vapor transport system includes a growth chamber charged with source material and a seed crystal in spaced relation, and at least one capsule having at least one capillary extending between an interior thereof and an exterior thereof, wherein the interior of the capsule is charged with a dopant. Each capsule is installed in the growth chamber. Through a growth reaction carried out in the growth chamber following installation of each capsule therein, a crystal is formed on the seed crystal using the source material, wherein the formed crystal is doped with the dopant.
摘要:
A sublimation-grown silicon carbide (SiC) single crystal boule includes a deep level dopant introduced into the SiC single crystal boule during sublimation-growth thereof such that in a continuous section of the boule that is not less than 50% of a continuous length of said boule, the deep level dopant concentration at the boule center varies by not more than 25% from the average concentration of the deep level dopant in the continuous section of the boule.
摘要:
In method of crystal growth, an interior of a crystal growth chamber (2) is heated to a first temperature in the presence of a first vacuum pressure whereupon at least one gas absorbed in a material (4) disposed inside the chamber is degassed therefrom. The interior of the chamber is then exposed to an inert gas at a second, higher temperature in the presence of a second vacuum pressure that is at a higher pressure than the first vacuum pressure. The inert gas pressure in the chamber is then reduced to a third vacuum pressure that is between the first and second vacuum pressures and the temperature inside the chamber is lowered to a third temperature that is between the first and second temperatures, whereupon source material (10) inside the chamber vaporizes and deposits on a seed crystal (12) inside the chamber.
摘要:
In method of crystal growth, an interior of a crystal growth chamber (2) is heated to a first temperature in the presence of a first vacuum pressure whereupon at least one gas absorbed in a material (4) disposed inside the chamber is degassed therefrom. The interior of the chamber is then exposed to an inert gas at a second, higher temperature in the presence of a second vacuum pressure that is at a higher pressure than the first vacuum pressure. The inert gas pressure in the chamber is then reduced to a third vacuum pressure that is between the first and second vacuum pressures and the temperature inside the chamber is lowered to a third temperature that is between the first and second temperatures, whereupon source material (10) inside the chamber vaporizes and deposits on a seed crystal (12) inside the chamber.
摘要:
In the growth of a SiC boule, a growth guide is provided inside of a growth crucible that is charged with SiC source material at a bottom of the crucible and a SiC seed crystal at a top of the crucible. The growth guide has an inner layer that defines at least part of an opening in the growth guide and an outer layer that supports the inner layer in the crucible. The opening faces the source material with the seed crystal positioned at an end of the opening opposite the source material. The inner layer is formed from a first material having a higher thermal conductivity than the second, different material forming the outer layer. The source material is sublimation grown on the seed crystal in the growth crucible via the opening in the growth guide to thereby form the SiC boule on the seed crystal.
摘要:
In a method of SiC single crystal growth, a SiC single crystal seed and polycrystalline SiC source material are provided in spaced relation inside of a graphite growth crucible along with at least one compound capable of forming SiO gas in the growth crucible. The growth crucible is heated whereupon the gaseous SiO forms and reacts with carbon in the growth crucible thereby avoiding the introduction of carbon into the SiC single crystal before and during the growth thereof and the SiC source material vaporizes and is transported via a temperature gradient in the growth crucible to the seed crystal where it precipitates and forms a SiC single crystal.
摘要:
A physical vapor transport growth system includes a growth chamber charged with SiC source material and a SiC seed crystal in spaced relation and an envelope that is at least partially gas-permeable disposed in the growth chamber. The envelope separates the growth chamber into a source compartment that includes the SiC source material and a crystallization compartment that includes the SiC seed crystal. The envelope is formed of a material that is reactive to vapor generated during sublimation growth of a SiC single crystal on the SiC seed crystal in the crystallization compartment to produce C-bearing vapor that acts as an additional source of C during the growth of the SiC single crystal on the SiC seed crystal.