摘要:
An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.
摘要:
An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.
摘要:
An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.
摘要:
An implantable cardiac device with an exertion level sensor is programmed to determine a heart rate appropriate for a given measured exertion level in accordance with a physiological model and/or previously collected physiologic data. The device then compares the model's heart rate with a measured intrinsic heart rate. Based upon this data, the device is able to recognize changes in the patient's heart rate response and predict or recognize a chronotropically incompetent condition.
摘要:
Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
摘要:
An implantable cardiac device with an exertion level sensor is programmed to determine a heart rate appropriate for a given measured exertion level in accordance with a physiological model and/or previously collected physiologic data. The device then compares the model's heart rate with a measured intrinsic heart rate. Based upon this data, the device is able to recognize changes in the patient's heart rate response and predict or recognize a chronotropically incompetent condition.
摘要:
A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
摘要:
Changes in patient status are assessed based at least in part on respiration parameters. A user can make selections regarding alert criteria options to be used in assessing patient status. Respiration is implantably sensed and respiration data is stored by an implantable device. A respiration parameter, such as respiration rate, is measured from the respiration data. The change in patient status is assessed by comparing the respiration parameter to the configured alert criteria. If the comparison of the respiration parameter and the configured alert criteria indicates a significant change in patient status, an alert signal is generated.
摘要:
Changes in patient status are assessed based at least in part on respiration parameters. A user can make selections regarding alert criteria options to be used in assessing patient status. Respiration is implantably sensed and respiration data is stored by an implantable device. A respiration parameter, such as respiration rate, is measured from the respiration data. The change in patient status is assessed by comparing the respiration parameter to the configured alert criteria. If the comparison of the respiration parameter and the configured alert criteria indicates a significant change in patient status, an alert signal is generated.
摘要:
A system and method for automatically adjusting the operating parameters of a rate-adaptive cardiac pacemaker. In accordance with the method, maximum exertion levels attained by the patient are measured at periodic intervals and stored. The stored maximum exertion levels may then be used to update a long-term maximal exertion level, and the slope of the rate-response curve is adjusted to map the updated long-term maximal exertion level to a maximum allowable pacing rate. The stored maximum exertion levels may also be used to update a sensor target rate which is used to adjust the slope of the rate response curve.