Abstract:
A method and a circuit to achieve a low drop-out voltage regulator with a wide output load range has been achieved. A fast loop is introduced in the circuit. The circuit is internally compensated and uses a capacitor to ensure that the internal pole is more dominant than the output pole as in standard Miller compensation. The quiescent current is set being proportional to the output load current. No explicit low power drive stage is required. The whole output range is covered by one output drive stage. By that means the total consumption of quiescent or wasted current is reduced. An excellent PSRR is achieved due to load dependent bias current.
Abstract:
An integrated driver circuit is provided for a LIN bus comprises a first input terminal, a second input terminal, and an output terminal, which is to be connected to a bus line of the LIN bus and at which an output data signal, dependent on an input data signal, is output, whereby the output data signal is output according to a first or according to at least one second LIN bus specification depending on whether the input data signal is applied at the first input terminal or the at least second input terminal.
Abstract:
A circuit arrangement is provided for controlling at least one actuator in a motor vehicle, comprising a microcontroller, a watchdog circuit with an active operating mode for monitoring the functionality of the microcontroller and a reduced activity operating mode, and with at least one microcontroller-controlled peripheral unit with a first operating mode for controlling at least one actuator. According to the invention, the peripheral unit has a second operating mode and is designed to change the actuator to a safe mode and/or to keep it in this mode when the peripheral unit is in the second operating mode, and the circuit arrangement is designed to operate the peripheral unit in the second operating mode at least whenever the watchdog circuit is in the reduced activity operating mode. The invention relates furthermore to a corresponding method for controlling at least one actuator in a motor vehicle.
Abstract:
A method is provided for edge formation of signals and transmitter/receiver component for a bus system. A transmitter/receiver component for a bus system comprises a driver transistor, which is to be looped between a bus line of the bus system and a reference potential and is used to output signals on the bus line, a control unit for the driver transistor, a high-frequency interference detector, which is configured in such a way that it detects a high-frequency interference level on the bus line of the bus system, whereby the control unit is configured in such a way that it controls the driver transistor, depending on the detected high-frequency interference level, in such a way that an edge steepness of the output signals increases when the high-frequency interference level on the bus line increases, and an edge steepness of the output signals decreases when the high-frequency interference level on the bus line decreases.
Abstract:
An integrated driver circuit is provided for a LIN bus comprises a first input terminal, a second input terminal, and an output terminal, which is to be connected to a bus line of the LIN bus and at which an output data signal, dependent on an input data signal, is output, whereby the output data signal is output according to a first or according to at least one second LIN bus specification depending on whether the input data signal is applied at the first input terminal or the at least second input terminal.
Abstract:
A circuit arrangement for generating a temperature-compensated voltage or current reference value (UREF) from a supply voltage (VCC) based on the bandgap principle comprises a PTAT circuit (201) for generating a PTAT signal (I1) proportional to the absolute temperature, a CTAT circuit (202) for generating a CTAT signal (UBE) inversely proportional to the absolute temperature, whereby for generating the temperature-compensated reference value (UREF), the PTAT signal (UBE) and the CTAT signal (I1) are superimposed, and a reference value monitoring circuit (203a, 203b, 203), which generates a reference value monitoring signal (UREF_OK) that indicates whether the reference value (UREF) is validly generated or not. The reference value monitoring circuit (203) is formed in such a way that it evaluates a current (I2) and/or a voltage in the CTAT circuit (202) and/or in the PTAT circuit (201) for generating the reference value monitoring signal (UREF_OK).
Abstract:
The invention refers to a charge/discharge protection circuit for a rechargeable battery, where the protection circuit is integrated on a single chip, including the fusible link, the load current switch and the short-circuit switch. This is achieved by dividing the functions of the fusible link, the load current switch, and the short-circuit switch into in parallel arranged T-sections, each of which is designed for only a fraction of the nominal load so that each of the easily integrated fuse segments carry only the respective fraction of the nominal current. It is important that the entire protection circuit or its control logic will not be destroyed before through an unduly high over-voltage, in which case the sequential melting of the fuse segments would no longer be guaranteed. This is handled by a semiconductor switch which short-circuits the over-voltage immediately.
Abstract:
A semiconductor component is provided, particularly for LIN bus systems, having an integrated circuit, which on a top side has a plurality of terminal pads for coupling and/or decoupling of electrical signals, and having a plurality of electrically conductive contact reeds, which are electrically connected at least partially by connecting bonding wires to the respectively assigned terminal pads of the integrated circuit. Also, a connecting bonding wire and a shielding bonding wire is provided, which is disposed with both ends on a uniform electric potential, particularly on one of the contact reeds.
Abstract:
A method is provided for edge formation of signals and transmitter/receiver component for a bus system. A transmitter/receiver component for a bus system comprises a driver transistor, which is to be looped between a bus line of the bus system and a reference potential and is used to output signals on the bus line, a control unit for the driver transistor, a high-frequency interference detector, which is configured in such a way that it detects a high-frequency interference level on the bus line of the bus system, whereby the control unit is configured in such a way that it controls the driver transistor, depending on the detected high-frequency interference level, in such a way that an edge steepness of the output signals increases when the high-frequency interference level on the bus line increases, and an edge steepness of the output signals decreases when the high-frequency interference level on the bus line decreases.
Abstract:
The invention refers to a charge/discharge protection circuit for a rechargeable battery which is protected by a fusible link, where the rechargeable battery comprises a control logic which opens or closes a load switch depending on the magnitude of the battery voltage, the voltage on the charge/discharge terminals of the protection circuit and the charge/discharge current. The protection circuit is designed so that the electric strength needs to match only the actual maximum battery voltage, thus requiring little real estate on an IC chip and also allowing most components to be integrated.