摘要:
A method for applying a carbon nanotube growth catalyst to at least one specified location on a substrate surface of a substrate formed of conductive material, and the method includes a preparation step for preparing on the substrate a coating layer having a hole contacting the substrate surface at a location corresponding to the specified location. The method also includes a deposition step for forming by deposition a conical deposited material on a substrate surface portion contacting the hole by irradiating the substrate with electrically conductive material particles in a oblique direction from above the coating layer while rotating the substrate about a shaft perpendicular to the substrate surface, and for forming by deposition an eaves-like deposited layer which extends to close an opening of the hole. The method also includes a determination step for measuring a size of the opening in accordance with extension of the eaves-like deposited layer, and a catalyst applying step for applying the catalyst to a tip of the conical deposited material by way of irradiation of material particles of the catalyst via the opening when the opening is measured to have a specified size.
摘要:
By making a cathode substrate function as a cathode and applying a voltage to the cathode and an anode, an electron emission element emits an electron from an electron source provided on the cathode substrate, and irradiates the electron onto an electron irradiation surface formed on the anode surface. The electron source is thread-type and provided on the cathode substrate. A deflecting voltage generates the electric field around the electron source. The electron source including a charge receives a power from the generated electric field to curve. Therefore, an irradiation position of the electron moves on the electron irradiation surface. Since it becomes unnecessary to move the electron irradiation surface and the electron source, a configuration of the electron emission element or an apparatus including the electron emission element is not complicated, and can be miniaturized and simple. Further, since the electron source curves, a tip of the electron source and the electron irradiation surface can be close, and a size of a beam spot at the irradiation position can be maintained constant. Therefore, since a mechanism for correcting the size of the beam spot is unnecessary, the configuration of the electron emission element or the apparatus including the electron emission element can be much simpler.
摘要:
By making a cathode substrate function as a cathode and applying a voltage to the cathode and an anode, an electron emission element emits an electron from an electron source provided on the cathode substrate, and irradiates the electron onto an electron irradiation surface formed on the anode surface. The electron source is thread-type and provided on the cathode substrate. A deflecting voltage generates the electric field around the electron source. The electron source including a charge receives a power from the generated electric field to curve. Therefore, an irradiation position of the electron moves on the electron irradiation surface. Since it becomes unnecessary to move the electron irradiation surface and the electron source, a configuration of the electron emission element or an apparatus including the electron emission element is not complicated, and can be miniaturized and simple. Further, since the electron source curves, a tip of the electron source and the electron irradiation surface can be close, and a size of a beam spot at the irradiation position can be maintained constant. Therefore, since a mechanism for correcting the size of the beam spot is unnecessary, the configuration of the electron emission element or the apparatus including the electron emission element can be much simpler.
摘要:
An information recording apparatus for recording tracks includes: a rotation drive section (RDS) that supports and rotates a master disk with a resist layer; an exposure beam emitting section (EBES) deflectably applying an exposure beam to the disk to form a spot thereon; a relative movement drive section (RMDS) translating the RDS relatively to the spot in a radial direction of the disk; an emission controller supplying the EBES with an instruction for modulating an intensity of the exposure beam according to data to be recorded; and a movement controller supplying the RMDS with an instruction for moving the RDS with the rotating disk by a predetermined moving amount for each disk rotation. The apparatus also includes a deflection controller supplying the EBES with instructions for deflection operations for deflecting the exposure beam in a manner that the spot is successively moved from a first exposure start position in either the opposite or the same direction to a moving direction of the RDS and then, at a point in time when the spot has moved up to an exposure stop position of the disk in predetermined rotation thereof, the spot is intermittently moved to a second exposure start position in the moving direction of the RDS, and wherein the spot is periodically returned to the first exposure start position.
摘要:
An optical data recording disc has a protrusion forming layer which is formed on a gas generating metal layer, and the gas generating metal layer, in turn, is formed on an optically polished disc. An optical beam is modulated by data and impinges on the gas generating metal layer, which locally evaporates the metal layer to form a gas. The gas expands and produces protrusions in the protrusion forming layer, and these protrusions are representative of the data. Accordingly, because the protrusions are formed essentially simultaneously with the recording operation, it is possible to reproduce the data being recorded immediately after the data is recorded so that failures in a recording device or in the optical data recording disc can be detected immediately.
摘要:
A recording device including a beam deflection section for relatively moving an irradiation position of an exposure beam with respect to a substrate on which a resist layer is formed; a substrate velocity adjustment section for adjusting a moving velocity of the substrate based on a deflection amount of the exposure beam; and a deflection control section for controlling to change a deflection velocity of the exposure beam during exposure of the recording signals according to the moving velocity of the substrate.
摘要:
There is disclosed a method of identifying a stamper for an optical information storage disk in order to distinguish first and second stampers from each other, the second stamper being replicated from the first stamper, each of the first and second stampers carrying recorded information signals and a printed code pattern recorded circumferentially and representing stamper identifying information from each other. The printed code pattern is read in a predetermined direction, and it is determined whether a start or stop signal of the printed code pattern is read first. The first and the second stampers are distinguished from each other in dependence on whether the start or stop signal is read first.
摘要:
A method and implementing apparatus for electroless plating an optical disk causes the disk to be positioned in a container with its main surface upturned and then rotated. As the disk rotates, liquid for treating or cleaning the disk is caused to fall on the upturned main surface from a position above the disk.
摘要:
The device includes a substrate holding portion for holding a substrate having resist formed thereon, a driving portion for varying the irradiation position of an exposure beam relatively to the substrate, and a cooling portion for cooling the substrate during irradiation of the exposure beam.
摘要:
A recording device including a beam deflection section for relatively moving an irradiation position of an exposure beam with respect to a substrate on which a resist layer is formed; a substrate velocity adjustment section for adjusting a moving velocity of the substrate based on a deflection amount of the exposure beam; and a deflection control section for controlling to change a deflection velocity of the exposure beam during exposure of the recording signals according to the moving velocity of the substrate.