Abstract:
In summary, a vertical metalized transition in the form of a via goes from the back side of a high thermal conductivity substrate and through any semiconductor layers thereon to a patterned metalized strip, with the substrate having a patterned metalized layer on the back side that is provided with a keep away zone dimensioned to provide impedance matching for RF energy coupled through the substrate to the semiconductor device while at the same time permitting the heat generated by the semiconductor device to flow through the high thermal conductivity substrate, through the back side of the substrate and to a beat sink.
Abstract:
A high-power and high-gain ultra-short gate HEMT device has exceptional gain and an exceptionally high breakdown voltage provided by an increased width asymmetric recess for the gate electrode, by a composite channel layer including a thin indium arsenide layer embedded in the indium gallium arsenide channel layer and by double doping through the use of an additional silicon doping spike. The improved transistor has an exceptional 14 dB gain at 110 GHz and exhibits an exceptionally high 3.5-4 V breakdown voltage, thus to provide high gain, high-power and ultra-high frequency in an ultra-short gate device.
Abstract:
A method for fabricating InP-based high electron-mobility transistors (HEMTs) and GaAs-based metamorphic electron-mobility transistors (MHEMTs) by utilizing asymmetrically recessed Γ-gates and self-aligned ohmic electrodes is disclosed. The fabrication starts with mesa isolation, followed by gate recess and gate metal deposition, in which the gate foot is placed asymmetrically in the recess groove, with the offset towards the source. It is important to use Γ-gates as the shadow mask for ohmic metal deposition, because it allows a source-gate spacing as small as 0.1 micron, greatly reducing the critical source resistance, and it retains a relatively large gate-drain spacing, enabling a decent breakdown voltage when coupled with the asymmetric gate recess. It is also critical to maintain a large stem height of the Γ-gates to assure a sufficient gap between the top of the gates and the ohmic metal after its deposition to reduce the parasitic capacitance. The uniqueness of this technology would best fit the applications that require low voltage and/or low DC power consumption.