METHOD FOR PRODUCING BUTADIENE BY OXIDATIVELY DEHYDROGENATING N-BUTENES

    公开(公告)号:US20180354872A1

    公开(公告)日:2018-12-13

    申请号:US15780725

    申请日:2016-12-02

    Applicant: BASF SE Linde AG

    Abstract: A) provision of a feed gas stream a comprising n-butenes;B) introduction of the feed gas stream a comprising n-butenes and an oxygen-comprising gas into a dehydrogenation reactor and oxidative dehydrogenation of n-butenes to butadiene;C) cooling and compression of the product gas stream b in at least one cooling stage comprising a quenching column and in a compression stage comprising a compressor, with the product gas stream b being brought into contact with at least one circulated coolant;D) separation of incondensable and low-boiling gas constituents as gas stream d2 from the gas stream c2 by absorption of the C4-hydrocarbons in at least one circulated absorption medium;E) separation of the C4 product stream d1 by extractive distillation using a solvent which is selective for butadiene into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes;F) distillation of the stream e1 comprising butadiene and the selective solvent to give a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene;wherein the measures (i) to (iii) below are carried out (i) avoidance of formation of explosive gas mixtures by monitoring of the oxygen concentration in the oxygen-comprising gas streams fed into the dehydrogenation zone and control of the mass flows of oxygen-comprising gas streams and gas streams comprising hydrocarbons in such a way that no explosive gas mixtures can be formed; (ii) interruption of the introduction of the oxygen-comprising gas mixture into the dehydrogenation zone when a limit value for the oxygen concentration in the dehydrogenation gas mixture is exceeded; (iii) carrying out of the steps A) to F) in apparatuses which are configured so as to be explosion-protected, where liquid-conveying pipes are configured so as to be explosion-protected and gas conduits are configured so as to be detonation-protected.

    METHOD FOR OXIDATIVELY DEHYDROGENATING N-BUTENES INTO 1,3-BUTADIENE

    公开(公告)号:US20160152532A1

    公开(公告)日:2016-06-02

    申请号:US14905569

    申请日:2014-07-17

    Applicant: BASF SE

    Abstract: A process for oxidative dehydrogenation of n-butenes to 1,3-butadiene in a fixed-bed reactor (R), which comprises at least two production steps (i) and at least one regeneration step (ii), and in which in a production step (i), a starting gas mixture (1) comprising the n-butenes is mixed with an oxygen-comprising gas (2) and brought into contact with a heterogeneous, particulate multimetal oxide catalyst comprising molybdenum and at least one further metal as active composition in the fixed-bed reactor (R) and in a regeneration step (ii), the heterogeneous, particulate multimetal oxide catalyst comprising molybdenum and at least one further metal as active composition is regenerated by passing an oxygen-comprising regeneration gas mixture over it and burning off the carbonaceous material deposited on the multimetal oxide catalyst, where a regeneration step (ii) is carried out between two production steps (i) and where a product gas stream (6) which comprises 1,3-butadiene and additionally unreacted n-butenes, oxygen, water and further secondary components, in particular carbon monoxide, carbon dioxide, inert gases, in particular nitrogen, high-boiling hydrocarbons, i.e. hydrocarbons having a boiling point of 95° C. or above at a pressure of one atmosphere, optionally hydrogen and optionally oxygenates is obtained in the production step (i) in the fixed-bed reactor (R) and is fed as such or after one or more intermediate steps as stream (11) to an absorption column (K) in which an absorption is carried out at a pressure in the range from 3.5 to 20 bar by means of a high-boiling absorption medium (13) which becomes loaded with the C4-hydrocarbons from the product gas stream (6) or the stream (11) and is taken off as loaded solvent stream (14) from the bottom of the absorption column (K) to give an overhead stream (12) comprising oxygen, low-boiling hydrocarbons, i.e. hydrocarbons having a boiling point of less than 95° C. at a pressure of one atmosphere, residues of C4-hydrocarbons, residues of high-boiling hydrocarbons, i.e. hydrocarbons having a boiling point of 95° C. or above at a pressure of one atmosphere, optionally inert gases, in particular nitrogen, optionally carbon oxides and optionally water vapor, and is partly or completely recycled as recycle stream to the fixed-bed reactor (R), wherein at the end of each production step (i), the introduction of the oxygen-comprising gas (2) into the reactor (R) is throttled back or shut off and the production step (i) is continued until the oxygen concentration in the overhead stream (12) has decreased to 5% by volume, based on the total volume of the overhead stream (12), whereupon the introduction of the gas stream (1) comprising the n-butenes and also the introduction of the oxygen-comprising gas (2) is shut off, if this has not already been done at the end of the production step (i), at which point the production step (i) is complete and the regeneration step (ii) is started by the overhead stream (12) from the absorption column (K) functioning as oxygen-comprising regeneration gas mixture or substream of the oxygen-comprising regeneration gas mixture, is proposed.

    PROCESS FOR PREPARING 1,3-BUTADIENE FROM N-BUTENES BY OXIDATIVE DEHYDROGENATION
    3.
    发明申请
    PROCESS FOR PREPARING 1,3-BUTADIENE FROM N-BUTENES BY OXIDATIVE DEHYDROGENATION 有权
    通过氧化脱氢制备N-丁烯的1,3-丁二烯的方法

    公开(公告)号:US20160355450A1

    公开(公告)日:2016-12-08

    申请号:US15033203

    申请日:2014-10-27

    Applicant: BASF SE

    Abstract: A process for preparing butadiene from n-butenes, comprising the steps of A) providing an input gas stream a1 comprising n-butenes; B) feeding the input gas stream a1 comprising n-butenes, an oxygenous gas and an oxygenous cycle gas stream a2 into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b and optionally at least partly removing high-boiling secondary components and steam, giving a product gas stream b′, Cb) compressing and cooling the product gas stream b′ in at least one compression and cooling stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, steam, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, Da) absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an aromatic hydrocarbon solvent as an absorbent and removing uncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, any carbon oxides, aromatic hydrocarbon solvent and any inert gases as gas stream d2 from the gas stream c2, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, Db) at least partly recycling the gas stream d2 as cycle gas stream a2 into the oxidative dehydrogenation zone, wherein the content of aromatic hydrocarbon solvent in the cycle gas stream a2 is limited to less than 1% by volume.

    PROCESS FOR PREPARING 1,3-BUTADIENE FROM N-BUTENES BY OXIDATIVE DEHYDROGENATION

    公开(公告)号:US20180105479A1

    公开(公告)日:2018-04-19

    申请号:US15561711

    申请日:2016-03-23

    Applicant: BASF SE Linde AG

    Abstract: The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases, D) removing noncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes into an absorption medium to obtain a C4-hydrocarbons-laden absorption medium stream and the gas stream d2 and subsequently desorbing the C4 hydrocarbons from the laden absorption medium stream to obtain a C4 product gas stream d1, wherein at least some of the recycled cooling medium from step Ca) is brought into thermal contact with the liquid n-butenes-comprising stream a0 in one or more indirect heat exchangers and at least some of the liquid n-butenes-comprising stream a0 is evaporated by indirect heat transfer with the recycled cooling medium.

    METHOD FOR PREPARING 1,3-BUTADIENE FROM N-BUTENES BY OXIDATIVE DEHYDROGENEATION

    公开(公告)号:US20190039971A1

    公开(公告)日:2019-02-07

    申请号:US16074454

    申请日:2017-01-30

    Applicant: BASF SE Linde AG

    Abstract: The invention relates to a method for producing butadiene from n-butenes having the steps: A) providing an n-butene-comprising feed gas stream a; B) feeding the n-butene-comprising feed gas stream a and an oxygen-comprising gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, wherein a product gas stream b comprising butadiene, unreacted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling minor components, optionally carbon oxides and optionally inert gases is obtained; Ca) cooling the product gas stream b by contacting it with a refrigerant and condensing at least a part of the high-boiling minor components; Cb) compressing the remaining product gas stream b in at least one compression step, wherein at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases is obtained; Da) separating off non-condensable and low-boiling gas components comprising oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorption medium, wherein an absorption medium stream loaded with C4 hydrocarbons and the gas stream d2 are obtained, and Db) subsequently desorbing the C4 hydrocarbons from the loaded absorption medium stream in a desorption column, wherein a C4 product gas stream d1 is obtained, Dc) separating off the steam condensate from the absorption medium in a phase separator and vaporizing it in a steam generator and providing it again as stripping gas in the desorption column, wherein, the steam condensate before the vaporization in a steam generator, is subjected to a pretreatment in a further method step.

    METHOD OF STARTING UP A REACTOR FOR THE OXIDATIVE DEHYDROGENATION OF N-BUTENES
    6.
    发明申请
    METHOD OF STARTING UP A REACTOR FOR THE OXIDATIVE DEHYDROGENATION OF N-BUTENES 审中-公开
    启动N-BUTEN的氧化脱氢反应器的方法

    公开(公告)号:US20160347686A1

    公开(公告)日:2016-12-01

    申请号:US15110985

    申请日:2015-01-09

    Applicant: BASF SE

    CPC classification number: C07C5/48 C07C7/005 C07C7/11 C07C11/167

    Abstract: The invention relates to a process for preparing butadiene from n-butenes having a start-up phase and an operating phase, wherein the process in the operating phase comprises the steps:A) provision of a feed gas stream a1 comprising n-butenes; B) introduction of the feed gas stream a1 comprising n-butenes, of an oxygen-comprising gas stream a2 and of an oxygen-comprising recycle gas stream d2 into at least one oxidative dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b and condensation of at least part of the high-boiling secondary components, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) introduction of the gas stream c2 into an absorption zone and separation of incondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d from the gas stream c2 by absorption of the C4-hydrocarbons comprising butadiene and n-butenes in an absorption medium, giving an absorption medium stream loaded with C4-hydrocarbons and the gas stream d, and recirculation, optionally after separating off a purge gas stream p, of the gas stream d as recycle gas stream d2 to the oxidative dehydrogenation zone; and the start-up phase comprises the steps: i) introduction of the oxygen-comprising gas stream and an inert gas stream into the dehydrogenation zone in such a ratio that the oxygen content of the recycle gas stream d2 corresponds to from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase; ii) setting of the recycle gas stream d2 to at least 70% of the volume flow of the recycle gas in the operating phase; iii) optional introduction, at an initial oxygen content of the recycle gas stream d2 of from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase, of a steam stream a3 into the dehydrogenation zone; iv) introduction, at an initial oxygen content of the recycle gas stream d2 of from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase, of an oxygen-comprising gas stream a2′ and a butene-comprising feed gas stream a1′ having a smaller volume flow than in the operating phase in a ratio k=a2′/a1′ and raising of the volume flow of the gas streams a1′ and a2′ until the volume flows of the gas streams a1 and a2 in the operating phase are obtained, with the recycle gas stream d2 being at least 70% and not more than 120% of the volume flow in the operating phase.

    METHOD FOR PRODUCING 1,3-BUTADIEN FROM N-BUTENES BY MEANS OF AN OXIDATIVE DEHYDROGENATION
    7.
    发明申请
    METHOD FOR PRODUCING 1,3-BUTADIEN FROM N-BUTENES BY MEANS OF AN OXIDATIVE DEHYDROGENATION 审中-公开
    通过氧化脱氢生产1,3-丁二烯的方法

    公开(公告)号:US20160152531A1

    公开(公告)日:2016-06-02

    申请号:US14905497

    申请日:2014-07-15

    Applicant: BASF SE

    CPC classification number: C07C5/48 C07C7/11 C07C11/167

    Abstract: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes; B) feeding the input gas stream a comprising n-butenes and an oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting it with a coolant and condensing at least a portion of the high-boiling secondary components; Cb) compressing the remaining product gas stream b in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; Da) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and Db) subsequently desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, which comprises additionally feeding in a methane-comprising gas stream at at least one point in the process section comprising steps B), Ca), Cb) and Da) in such amounts that the formation of an explosive gas mixture in step Da) is avoided.

    Abstract translation: 本发明涉及一种从正丁烯制备丁二烯的方法,包括以下步骤:A)提供包含正丁烯的输入气流a; B)将包含正丁烯和含氧气体的输入气流a送入至少一个氧化脱氢区并将正丁烯氧化脱氢成丁二烯,得到包含丁二烯,未转化的正丁烯,水蒸汽,氧气的产物气流b 低沸点碳氢化合物和高沸点二级组分,有或没有碳氧化物和有或没有惰性气体; Ca)通过使产品气流b与冷却剂接触并冷凝至少一部分高沸点次级组分来冷却产物气流b; Cb)在至少一个压缩阶段压缩剩余的产物气流b,得到至少一种含水冷凝物流c1和一种含有或不含碳的丁二烯,正丁烯,水蒸汽,氧和低沸点烃的气流c2 氧化物和有或没有惰性气体; Da)通过吸收包含丁二烯和正丁烯的C 4烃,除去包含氧气和低沸点烃的无碳酸盐和低沸点烃,具有或不具有碳氧化物和有或无惰性气体作为气流d2来自气流c2 在吸收剂中,产生载有C 4烃的吸收剂流,气流d2和Db)随后从负载的吸收剂流中解吸C4烃,得到C4产物气流d1,其包括另外进料含甲烷气体 在包括步骤B),Ca),Cb)和Da)的过程部分中的至少一个点处的流量以使得在步骤Da)中形成爆炸性气体混合物的量被避免。

Patent Agency Ranking