摘要:
Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
摘要:
Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members. The system can include a navigation-based guide coupling preparation system that can generate a plan for positioning the cut guide onto or conforming to the target bone. The system can further include a display module that provides presentations of the coupling between the target bone and the cut guide.
摘要:
Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members. The system can include a navigation-based guide coupling preparation system that can generate a plan for positioning the cut guide onto or conforming to the target bone. The system can further include a display module that provides presentations of the coupling between the target bone and the cut guide.
摘要:
Systems and methods for computer-aided alignment and positioning of a prosthesis component onto a target host bone, such as in joint resurfacing arthroplasty, are discussed. A system for can include a processor unit and a user interface unit. The processor unit can receive a target bone model including a first data set representing a target bone surface, and a prosthesis model including a second data set representing a prosthesis surface. The prosthesis, when positioned against the target bone, is configured to at least partially replace the articulation surface. The processor unit can generate an articulation interface representation that indicates spatial misalignment between one or more portions of the prosthesis surface and one or more portions of the target bone surface when the prosthesis model is positioned against the target bone model.
摘要:
Systems and methods for navigation and control of an implant positioning device are discussed. For example, a method can include operations for accessing an implant plan, establishing a 3-D coordinate system, receiving tracking information, generating control signals, and sending the control signals to the implant positioning device. The implant plan can include location and orientation data describing an ideal implant location and orientation in reference to an implant host. The 3-D coordinate system can provide spatial orientation for the implant positioning device and the implant host. The tracking information can identify current location and orientation data within the 3-D coordinate system for the implant positioning device and implant host during a procedure. The control signals can control operation of the implant positioning device to assist a surgeon in positioning the implant according to the implant plan.
摘要:
Systems and methods for generating a surgical plan for altering an abnormal bone using a generic normal bone model are discussed. For example, a system for planning a surgery on an abnormal bone can include a model receiver module configured to receive a generic normal bone model. The generic normal bone model, such as a parametric model derived from statistical shape data, can include a data set representing a normal bone having an anatomical origin comparable to the abnormal bone. An input interface can be configured to receive an abnormal bone representation including a data set representing the abnormal bone. A surgical planning module can include a registration module configured to register the generic normal bone model to the abnormal bone representation by creating a registered generic model. A surgical plan formation module can be configured to identify one or more abnormal regions of the abnormal bone using the registered generic model.
摘要:
Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
摘要:
Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
摘要:
Systems and methods for computer-aided alignment and positioning of a prosthesis component onto a target host bone, such as in joint resurfacing arthroplasty, are discussed. A system for can include a processor unit and a user interface unit. The processor unit can receive a target bone model including a first data set representing a target bone surface, and a prosthesis model including a second data set representing a prosthesis surface. The prosthesis, when positioned against the target bone, is configured to at least partially replace the articulation surface. The processor unit can generate an articulation interface representation that indicates spatial misalignment between one or more portions of the prosthesis surface and one or more portions of the target bone surface when the prosthesis model is positioned against the target bone model.
摘要:
Systems and methods for positioning a cut guide using navigation-based techniques are discussed. A system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system can include an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.