Abstract:
Provided are an array substrate and a manufacturing method thereof, the manufacturing method includes: forming a first active layer on a base substrate; forming a second active layer; forming a second gate on the second active layer; forming a first insulating layer covering the first active layer on the second gate; patterning the first insulating layer to form first via holes at both sides of the second gate to expose the second active layer; depositing a first metal layer in the first via holes and on the first insulating layer; patterning the first metal layer, removing a part of the first metal layer above the first active layer to expose the first insulating layer; etching the first insulating layer using the patterned first metal layer as a mask, forming second via holes above the first active layer to expose the first active layer; cleaning the exposed first active layer.
Abstract:
The present application provides an array substrate, a manufacturing method for the same, and a display panel. The array substrate includes a display area and a non-display area connected to the display area, and the display area includes a plurality of sub-pixels arranged in an array. The non-display area includes at least one polysilicon transistor, each of the sub-pixels includes an oxide transistor and a pixel electrode. A gate of the oxide transistor as well as a first electrode and a second electrode of the polysilicon transistor are arranged in a same layer; an active layer of the oxide transistor and the pixel electrode are arranged in a same layer, and are in contact with each other. The active layer of the oxide transistor includes an oxide semiconductor material, and the pixel electrode includes an oxide conductor material.
Abstract:
Embodiment of the present disclosure provide a thin-film transistor structure, a manufacturing method thereof, a display panel and a display device. The thin-film transistor structure includes: a base substrate; and a first thin-film transistor and a second thin-film transistor formed on the base substrate, wherein a first active layer of the first thin-film transistor is doped with hydrogen; a material of a second active layer of the second thin-film transistor is metal oxide; and a first isolation barrier surrounding the first thin-film transistor and/or a second isolation barrier surrounding the second thin-film transistor are disposed on the base substrate.
Abstract:
The present application discloses a thin film transistor including a base substrate; an active layer on the base substrate having a channel region, a source electrode contact region, and a drain electrode contact region; an etch stop layer on a side of the channel region distal to the base substrate covering the channel region; a source electrode on a side of the source electrode contact region distal to the base substrate; and a drain electrode on a side of the drain electrode contact region distal to the base substrate. A thickness of the active layer in the source electrode contact region and the drain electrode contact region is substantially the same as a combined thickness of the active layer in the channel region and the etch stop layer.
Abstract:
A method for fabricating an array substrate is disclosed. The method comprises: forming a first oxide semiconductor active layer of a first TFT in a GOA area of a substrate; performing a first annealing process on the first oxide semiconductor active layer at a first temperature; forming a first insulating layer which covers the first oxide semiconductor active layer; performing a second annealing process on the first oxide semiconductor active layer at a second temperature, wherein the second temperature is lower than the first temperature. This improves a forward bias stability of the first TFT and increases the device lifetime.
Abstract:
The present application discloses a thin film transistor including a base substrate; an active layer on the base substrate having a channel region, a source electrode contact region, and a drain electrode contact region; an etch stop layer on a side of the channel region distal to the base substrate covering the channel region; a source electrode on a side of the source electrode contact region distal to the base substrate; and a drain electrode on a side of the drain electrode contact region distal to the base substrate. A thickness of the active layer in the source electrode contact region and the drain electrode contact region is substantially the same as a combined thickness of the active layer in the channel region and the etch stop layer.
Abstract:
The invention belongs to the field of display technology, and particularly provides an array substrate and a method for manufacturing the same, and a display device. The array substrate includes a base substrate, and a thin film transistor and driving electrodes provided on the base substrate, the thin film transistor includes a gate, a gate insulating layer, an active layer, a source and a drain, the driving electrodes include a slit-shaped electrode and a plate-shaped electrode which are located in different layers and at least partially overlap with each other in the orthographic projection direction, the source, the drain and the active layer are formed so that part of their bottom surfaces are located in the same plane, and a resin layer is further provided between the thin film transistor and the plate-shaped electrode.
Abstract:
An OLED display device including a display area is provided. A first and second thin film transistors (TFTs) are arranged in the display area, the first TFT includes a first active layer, the second TFT includes a second active layer, a material of the first active layer is different from that of the second active layer. The OLED display device includes a substrate, the second active layer, a second gate of the second TFT, the first active layer, a first gate of the first TFT, a first source and drain of the first TFT, a second source and drain of the second TFT, a first data line in a same layer as the second source and drain, a first planarization layer on the first data line, and a second data line on the first planarization layer and electrically insulated from the first data line.
Abstract:
The present disclosure relates to an OLED display panel and display device. The OLED display panel includes: a display area, a bending area and a bonding area for bonding a circuit board, wherein the display panel further includes: a base substrate; a first semiconductor pattern on the base substrate; a first insulating layer group on the first semiconductor pattern; a second semiconductor pattern on the first insulating layer group; a second insulating layer group on the second semiconductor pattern; first via holes in the first insulating layer group and the second insulating layer group; second via holes in the second insulating layer group, wherein the display panel further includes: a first groove located in the bending area and having a depth substantially identical to that of the first via holes; and a metal trace, connecting a trace in the display area to the circuit board.
Abstract:
A displaying base plate and a manufacturing method thereof, and a displaying device. The displaying base plate includes a substrate, and a first electrode layer disposed on one side of the substrate, wherein the first electrode layer includes a first electrode pattern; a first planarization layer disposed on one side of the first electrode layer that is away from the substrate, wherein the first planarization layer is provided with a through hole, and the through hole penetrates the first planarization layer, to expose the first electrode pattern; and a second electrode layer, a second planarization layer and a third electrode layer that are disposed in stack on one side of the first planarization layer that is away from the substrate, wherein the second electrode layer is disposed closer to the substrate, the second electrode layer is connected to the first electrode pattern and the third electrode layer.