Abstract:
An X-ray detection board and a manufacture method thereof, and an X-ray detection device are disclosed in the embodiments of the present invention. The X-ray detection board comprises: a substrate; photoelectric conversion devices disposed on the substrate; a conversion layer disposed on the photoelectric conversion devices and configured to convert X-rays into visible light; and a packaging layer disposed on the conversion layer and having a plurality of transmission windows, wherein the photoelectric conversion devices correspond in position to the transmission windows, respectively, and wherein condenser lenses for condensing the light converted by the conversion layer are disposed on sides of the photoelectric conversion devices facing the transmission windows. A light condensing effect is improved by use of the condenser lenses such as microlenses so that more light can be projected upon the photoelectric conversion devices through the condenser lenses. As a result, a quantum efficiency and thus an imaging effect are improved.
Abstract:
A method of preparing a quantum dot layer, including: placing an anodic aluminum oxide sheet with a plurality of through holes on a substrate; dispersing quantum dots into the plurality of through holes of the anodic aluminum oxide sheet; and removing the anodic aluminum oxide sheet to form a quantum dot layer.
Abstract:
A display substrate, a display apparatus, and a manufacturing method for the display substrate are provided. The display substrate includes: a substrate and a plurality of pixel units arranged in an array on the substrate; the pixel unit includes a light emitting diode, a connecting metal pattern, and a thin film transistor arranged in sequence along a direction away from the substrate; the connecting metal pattern is conductively connected to a top electrode of the light emitting diode; an active layer of the thin film transistor is insulated and spaced from the connecting metal pattern, and the drain of the thin film transistor is conductively connected to the connecting metal pattern.
Abstract:
The nanoimprint mold (100) includes a base substrate (10). The base substrate (10) includes a main area (MA) and a secondary area (SA) surrounding the main area (MA). The main area (MA) includes a molding structure (16), and the molding structure (16) includes a plurality of first concave portions (18) and a plurality of first convex portions (20). The secondary area (SA) includes a grating structure (22), and the grating structure (22) includes a plurality of second concave portions (24) and a plurality of second convex portions (26). A height of at least one of the second convex portions (26) is larger than a height of at least one of the first convex portions (20). The nanoimprint mold (100), manufacturing method thereof, and pattern transfer method using nanoimprint mold (100) make the overflow of the nanoimprint resist in the secondary area (SA) of the nanoimprint mold (100) is significantly suppressed, and the topography of pattern in the secondary area (SA) of the nanoimprint mold (100) is significantly improved. Furthermore, the thickness of the resist layer in the adjacent areas will not be significantly increased. Accordingly, the defective area of the pattern of the resist layer, especially at the joint area between the two nanoimprinting positions, is significantly reduced.
Abstract:
An X-ray detection board and a manufacture method thereof, and an X-ray detection device are disclosed in the embodiments of the present invention. The X-ray detection board comprises: a substrate; photoelectric conversion devices disposed on the substrate; a conversion layer disposed on the photoelectric conversion devices and configured to convert X-rays into visible light; and a packaging layer disposed on the conversion layer and having a plurality of transmission windows, wherein the photoelectric conversion devices correspond in position to the transmission windows, respectively, and wherein condenser lenses for condensing the light converted by the conversion layer are disposed on sides of the photoelectric conversion devices facing the transmission windows. A light condensing effect is improved by use of the condenser lenses such as microlenses so that more light can be projected upon the photoelectric conversion devices through the condenser lenses. As a result, a quantum efficiency and thus an imaging effect are improved.
Abstract:
A display panel motherboard, a cutting method and a manufacturing method thereof, a display panel, and a display device are provided. The display panel motherboard includes at least three mother substrates, at least one display panel unit, and a cutting region. The at least three mother substrates are stacked with each other, at least a portion of the at least one display panel unit is surrounded by the cutting region, and an organic film layer is not disposed in at least two of the at least three mother substrates in the cutting region.
Abstract:
A display panel and a manufacturing method thereof, and a display device. The display panel includes a light guide plate, an array substrate, a liquid crystal layer between the light guide plate and the array substrate, a plurality of light-extracting gratings located on one side of a light exit surface of the light guide plate, and a transparent protection layer between a film layer where the light-extracting gratings are located and the light guide plate. The light guide plate includes a plurality of light-extracting port areas, and transparent areas besides the light-extracting port areas; each light-extracting port area is provided with one light-extracting grating; the protection layer is at least provided on the transparent areas, and the protection layer is configured to prevent the light guide plate in the transparent areas from being excessively etched to form a plurality of depressions.
Abstract:
Provided are a display panel, a preparation method thereof, and a display apparatus. The display panel includes an array substrate and a color filter substrate aligned and combined into a cell. The color filter substrate includes a first base substrate and a plurality of color resist blocks arranged at intervals on the first base substrate. The array substrate includes a second base substrate and a plurality of pixel electrodes arranged at intervals on the second base substrate. The pixel electrodes are in one-to-one correspondence with the color resist blocks. The display panel includes a bending area and a non-bending area located at least on one side of the bending area. A density of the pixel electrodes in the bending area is less than that in the non-bending area, and a density of the color resist blocks in the bending area is less than that in the non-bending area.
Abstract:
A frame sealing adhesive of the liquid-crystal phase shifter is disposed between two transparent substrates, the frame sealing adhesive encloses a first cavity, a first part of the metal-trace layer is located inside the first cavity, and a second part of the metal-trace layer is located outside the first cavity. The second part is disposed on first surfaces or second surfaces of the two transparent substrates. If the second part is disposed on the first surfaces of the two transparent substrates, metal cushion layers are provided between the frame sealing adhesive and the first surfaces of the two transparent substrates. If the second part is disposed on the second surfaces of the two transparent substrates, the first part and the second part are electrically connected by metal via holes provided in the transparent substrates, and the frame sealing adhesive contacts the first surfaces of the two transparent substrates.
Abstract:
A method of preparing a quantum dot layer, including: placing an anodic aluminum oxide sheet with a plurality of through holes on a substrate; dispersing quantum dots into the plurality of through holes of the anodic aluminum oxide sheet; and removing the anodic aluminum oxide sheet to form a quantum dot layer.