Abstract:
The present disclosure provides a brightness enhancement film. The brightness enhancement film includes a plurality of color filter layers in different colors, and the color filter layer in one color has a thickness different from any one of thicknesses of the color filter layers in the other colors.
Abstract:
The present invention provides a driving method and a driving device for liquid crystal pixel unit, and a liquid crystal display device. In the driving method, the liquid crystal pixel unit comprises a first pixel electrode, a second pixel electrode and a first shared capacitor; the driving method comprises: providing a charging connection signal for charging the first and second pixel electrodes to an equivalent voltage using the data signal; providing a shared connection signal with an interval of a first time after the charging connection signal is finished, electrically connecting the first shared capacitor with first pixel electrode and changing the voltage on the first pixel electrode; said first time is larger than or equal to 1/10 and smaller than or equal to ¾ of the display period. The driving method is applicable to the liquid crystal display device of VA mode, especially to that of CS-SPVA mode.
Abstract:
An array substrate includes a base substrate and a selective reflective layer. The selective reflective layer on the base substrate, and includes at least one selective reflective unit. The selective reflective unit is configured to reflect light of a first wavelength range and transmit light of a second wavelength range other than the first wavelength range.
Abstract:
The present invention discloses a liquid crystal display panel and a display device. A capacitance compensation portion is arranged using a shading region, and the capacitance compensation portion is arranged opposite to a portion of a common electrode located within the shading region. Compared to the case where a common electrodes and a pixel electrode are overlapped only in a light transmitting region, the present invention enlarges the overlap area of the pixel electrode and the common electrode in the shading region, compensates the storage capacitance between the pixel electrode and the common electrode, and reduces the voltage difference before and after jump of the voltage of the pixel electrode, and improves the flicker of a liquid crystal display panel. Moreover, as the capacitance compensation portions additionally provided in the pixel electrodes are located within the shading region, the aperture rate of pixel regions will not be influenced.
Abstract:
Embodiments of the present disclosure provide a display panel and a display device. The display panel includes an array substrate, a color filter substrate opposite to the array substrate and assembled with the array substrate, and a liquid crystal layer between the array substrate and the color filter substrate. The array substrate includes: a base; and a data line, a gate line, and at least one electrode layer on the base. A protrusion is provided on a side of the array substrate adjacent to the color filter substrate, and the protrusion has a thickness smaller than a distance between the array substrate and the color filter substrate, and an orthographic projection of the protrusion on the base covers an orthographic projection of the data line or the gate line on the base.
Abstract:
The present disclosure provides a display substrate and a display device. The display substrate includes a base substrate, a plurality of data lines and a plurality of pixels arranged in an array on the base substrate, each of the data lines extends along a column direction, the pixels in a single column are connected to one single data line of the data lines, any two data lines of the data lines connected to adjacent columns of the pixels constitute a pair of data lines, any two adjacent pixels in each row of the pixels constitute a pair of pixels, each pair of data lines pass through one row of any two adjacent rows of the pixels by extending between two pairs of pixels, and pass through another one row of the two adjacent rows of the pixels by extending between two pixels of one pair of pixels.
Abstract:
According to the array substrate provided by this disclosure, in a row of sub-pixels, sub-pixels in the odd columns and even columns are separately coupled to different gate lines, i.e., making the sub-pixels coupled to the same gate line are not adjacent to each other. In this way, during row scanning drive, an up-down twist charging may be implemented, and the sub-pixels cause no interference to each other.
Abstract:
The disclosure provides a display substrate and a manufacturing method thereof, a display panel and a display apparatus. The display substrate includes a substrate and an electroluminescent layer on the substrate. The display substrate further includes a first reflective electrode layer, a buffer layer and a second reflective electrode layer sequentially formed on a side of the electroluminescent layer distal to the substrate. The buffer layer is provided with a first hollow region, the second reflective electrode layer is provided with a second hollow region, an overlapping region between the first hollow region and the second hollow region is configured to transmit light emitted by the electroluminescent layer. The present disclosure can detect the light-emitting brightness of each sub-pixel in the organic electroluminescent layer in real time to improve light-emitting efficiency.
Abstract:
The present disclosure provides an array substrate comprising a plurality of gate lines, and a plurality of data lines that intersect the plurality of gate lines. A plurality of pixel units are defined by the plurality of gate lines and the plurality of data lines which intersect each other. Each pixel unit comprises a thin film transistor, a gate insulating layer, a passivation layer arranged on one side of the gate insulating layer, a pixel electrode and a common electrode, wherein a source and a drain of the thin film transistor are arranged between the passivation layer and the gate insulating layer, the common electrode is arranged on the other side of the gate insulating layer opposite to the passivation layer, and the pixel electrode is arranged on the passivation layer. The present disclosure further provides a method for manufacturing an array substrate and a display device.
Abstract:
The present disclosure provides a display panel, a method and a device for measuring screen flickering, and a display device. The display panel includes a substrate, data lines and gate lines arranged on the substrate and crossing each other, and subpixel units defined by the data lines and the gate lines. Each subpixel unit includes a TFT, a pixel electrode, a first common electrode and a second common electrode. The second common electrode is connected to an input end capable of providing an alternating voltage at a first frequency. An orthogonal projection of the second common electrode onto the substrate at least partially overlaps an orthogonal projection of the pixel electrode onto the substrate.