Abstract:
Intravascular nerve modulation systems and methods for making and using the same are disclosed. An example system may include an elongate shaft having a proximal end region and a distal end region and a central longitudinal axis. An ablation transducer may be disposed at the distal end region. The system may also include a rotational drive configured to rotate the ablation transducer about the central longitudinal axis. A control and power system may be operably connected to the ablation transducer and the rotational drive. In some instances, the ablation transducer may be a combined ablation and imaging transducer.
Abstract:
Systems for nerve and tissue modulation are disclosed. An illustrative system may include an intravascular nerve modulation system including a catheter shaft, a first flexible mount, and a cylindrical ablation transducer. The ablation transducer may be affixed to the catheter shaft through the flexible mount to allow an infusion fluid to pass through a lumen of the transducer. Another illustrative system may include an intravascular nerve modulation system including an expandable basket for centering an ablation tra7nsducer within a lumen.
Abstract:
A metallic tube arrangement includes an electrode region configured to expand radially and contract radially in response to increasing and decreasing a temperature at the electrode region, respectively. The electrode region is configured for intravascular deployment and delivery of high frequency energy to target tissue of a target vessel of the body. The electrode region is configured to expand radially to a diameter sufficient to contact an inner wall of the target vessel in response to a decrease in electrode region temperature and to contract radially to a diameter smaller than a diameter of the target vessel in response to an increase in electrode region temperature.
Abstract:
A percutaneous pumping system for providing hemodynamic support to a patient includes a pumping sleeve that defines a lumen extending along the length of the pumping sleeve. The pumping sleeve is configured and arranged for insertion into patient vasculature. At least one rotatable magnet is disposed in the pumping sleeve. The at least one first magnet is configured and arranged to be driven to rotate by a magnetic field generated external to the pumping sleeve. At least one impeller is coupled to the at least one magnet. Rotation of the at least one magnet causes a corresponding rotation of the at least one impeller. An anchoring arrangement is coupled to the pumping sleeve. The anchoring arrangement is configured and arranged to anchor the pumping sleeve at a target pumping location when the pumping sleeve is inserted into patient vasculature.
Abstract:
Systems for nerve and tissue modulation are disclosed. An example system may include an intravascular nerve modulation system including an elongated shaft having a first tubular member and a second tubular member. Each of the tubular members may have a proximal end a distal end. The distal end of the second tubular member may be extended distally beyond the distal end of the first tubular member. The system may further include at least one transducer affixed to the distal end region of the second tubular member. In addition, the system may include an infusion sheath having a proximal end and a distal end and the proximal end of the infusion sheath may be fixedly secured to the catheter shaft adjacent the distal end of the first tubular member.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device includes a pressure sensing guidewire. The pressure sensing guidewire may include an elongate shaft including a core wire having a distal portion and a coil disposed over the distal portion. A pressure sensor may be disposed along the distal portion of the core wire and within the coil. One or more leads may be coupled to the pressure sensor. An opening may be formed in the coil that provides access to the pressure sensor.