Abstract:
In the phenolic resin to be blended with rubber of the present invention, when the total peak area in a chemical shift measured by 13C-NMR of 110 ppm or more and 160 ppm or less is taken as 100, the total peak area in 0 ppm or more and less than 60 ppm is 80 to 400 and the total peak area in 60 ppm or more and less than 110 ppm is 2 to 70.
Abstract:
There is provided a rubber composition for a tire excellent in the low heat generating property and abrasion resistance. To achieve the above object, the rubber composition for a tire according to the present disclosure is a rubber composition comprising a rubber component containing a diene rubber, a carbon black, and a silica, and further comprising a carbon black dispersant composed of a compound represented by the formula (I) or the like, and a compound having a Hansen solubility parameter (HSP) of 27 or more.
Abstract:
A rubber composition contains a rubber component, an organic phosphoric acid compound having at least one alkyl chain, a vulcanizing agent, and a vulcanization accelerator. A content of a cobalt-containing compound is 0.00 parts by mass or more and less than 0.01 parts by mass as converted to a cobalt amount per 100 parts by mass of the rubber component. A content of N,N-dicyclohexyl-2-benzothiazolylsulfenamide is 0.00 parts by mass or more and less than 0.08 parts by mass per 100 parts by mass of the rubber component. The rubber composition can be used to produce a rubber-metal composite excellent in heat-resistant adhesion between a vulcanized rubber and a metal.
Abstract:
Provided is a rubber composition comprising: a rubber component containing diene-based rubber; a filler, and a compound represented by formula (I) below: (wherein: A is an aryl group and has at least two polar groups, which may be the same or different from each other; R1 and R2 are each independently at least one substituent selected from a group consisting of a hydrogen atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group; and further, the substituent may include one or more of O, S, and N atoms), so as to provide a rubber composition excellent in low heat generating property and wear resistance.
Abstract:
Provided is a method for producing a rubber composition that includes a rubber component (A) including natural rubber, at least one filler (B) selected from an inorganic filler and carbon black, and a monohydrazide compound (C) supported on a solid. The monohydrazide compound (C) is represented by general formula (I): R—CONHNH2, where R represents an alkyl group having from 1 to 30 carbon atoms, a cycloalkyl group having from 3 to 30 carbon atoms, or an aryl group. The method comprises compounding in an optional preliminary compounding stage and a plurality of compounding stages, and adding the monohydrazide compound (C) supported on the solid and kneading in the preliminary compounding stage and/or a first compounding stage. Also provided is a rubber composition produced with this method.
Abstract:
We provide a method for producing a rubber composition that includes a rubber component (A) including natural rubber, at least one filler (B) selected from an inorganic filler and carbon black, and a hydrazide compound (C), the method comprising compounding in an optional preliminary compounding stage and a plurality of compounding stages, and adding the hydrazide compound (C) and kneading in the preliminary compounding stage and/or a first compounding stage, the hydrazide compound (C) being represented by general formula (I): R—CONHNH2, where R represents an alkyl group having from 1 to 30 carbon atoms, a cycloalkyl group having from 3 to 30 carbon atoms, or an aryl group. We also provide a rubber composition produced with this method.