Abstract:
A number of features for enhancing the performance of a cable transmission system in which data is transmitted between a cable modem termination system at a headend and a plurality of cable modems located different distances from the headend. The power transmission level, slot timing, and equalization of the cable modems are set by a ranging process. Data is transmitted by the modems in fragmented form. Various measures are taken to make transmission from the cable modems robust. The upstream data transmission is controlled to permit multiple access from the cable modems.
Abstract:
A method for parallel concatenated (Turbo) encoding and decoding. Turbo encoders receive a sequence of input data tuples and encode them. The input sequence may correspond to a sequence of an original data source, or to an already coded data sequence such as provided by a Reed-Soloman encoder. A turbo encoder generally comprises two or more encoders separated by one or more interleavers. The input data tuples may be interleaved using a modulo scheme in which the interleaving is according to some method (such as block or random interleaving) with the added stipulation that the input tuples may be interleaved only to interleaved positions having the same modulo-N (where N is an integer) as they have in the input data sequence. If all the input tuples are encoded by all encoders then output tuples can be chosen sequentially from the encoders and no tuples will be missed. If the input tuples comprise multiple bits, the bits may be interleaved independently to interleaved positions having the same modulo-N and the same bit position. This may improve the robustness of the code. A first encoder may have no interleaver or all encoders may have interleavers, whether the input tuple bits are interleaved independently or not. Modulo type interleaving also allows decoding in parallel.
Abstract:
A method for communicating information is disclosed wherein a time slot is allocated in a time division multiple access system for a transmission from a subscriber to a headend. Synchronization of a clock of the subscriber with respect to a clock of the headend is enhanced using a message transmitted from the headend to the subscriber which is indicative of an error in a subscriber transmission time with respect to the time slot. A feedback loop process is used to determine at least one of fractional symbol timing correction and carrier phase correction of a transmission from the subscriber to the headend. Filter coefficients are generated at the headend from a ranging signal transmitted from the subscriber to the headend and transmitting the filter coefficients from the headend to the subscriber, the filter coefficients being used by the subscriber to compensate for noise in a transmission from the subscriber to the headend.