Abstract:
A battery pack and an electric vehicle are provided. The battery pack includes a battery sequence. The battery sequence includes multiple cells. A thickness of each cell extends along a first direction. The multiple cells are arranged in sequence along the first direction to form the battery sequence. At least one of the cells includes a metal shell and an electrode core packaged in the metal shell. An air pressure inside the metal shell is lower than an air pressure outside the metal shell. A gap is provided between at least two adjacent cells. A ratio of the gap to the thickness of the cell ranges from 0.001 to 0.15.
Abstract:
This application relates a battery pack and an electric vehicle. The battery pack includes a housing provided with a bottom surface and a top surface. A battery assembly is arranged in the housing. The battery assembly includes a structural reinforcing member and a cell sequence formed by connecting multiple cells. An outer surface of the cell includes a bottom surface, a top surface, first lateral surfaces, and two opposing second lateral surface. The bottom surface of the cell faces the bottom surface of the housing, and the top surface of the cell faces the top surface of the housing. The first lateral surface has a largest area. The multiple cells are arranged with second lateral surfaces thereof facing each other to form the cell sequence, and the structural reinforcing member is fixedly bonded with a first lateral surface of each cell in the cell sequence. The battery assembly abuts with the bottom surface of the housing to be supported in the housing.
Abstract:
A battery includes a case and a battery core assembly disposed in the case, the battery core assembly includes a plurality of battery core groups and an receiving space holding the plurality of battery core groups, the battery core groups are connected in series, and the battery core group includes at least one battery core; a separator plate is disposed between at least two adjacent battery core groups, the separator plate divides the receiving space into a plurality of receiving cavities, each of the receiving cavities holds one or more battery core groups , and a cavity wall of the receiving cavity comprised by a connection of the separator plate and a separation membrane; and the battery further includes a liquid injection channel and the liquid injection channel in a sealed state, the liquid injection channel is disposed on at least one of the separation membranes and the separator plates.
Abstract:
A solar cell array comprises a plurality of cells, adjacent cells connected by a metal wire. At least one metal wire extends reciprocally between a surface of a first cell and a surface of a second cell adjacent to the first cell to form a plurality of conductive wires. The number of the conductive wires is n, y−y×20%≦n≦y+y×20%, in which n is an integer and y=4.0533X−1.28/1562*A*B, in which X is a diameter value of the metal wire with mm as a unit, 0.1≦X≦0.5, A and B representing length and width of the cell with mm as the unit. The cells comprise secondary grid lines disposed on front surfaces thereof. The conductive wires are welded with the secondary grid lines by a welding layer.
Abstract:
A battery, a battery module, a battery pack, and an electric vehicle are provided. The battery includes a metal shell and a plurality of electrode core assemblies sealed in the metal shell and arranged in sequence. The electrode core assemblies are connected in series. Each of the electrode core assemblies includes at least one electrode core. The electrode core assemblies are sealed in a packaging film. An air pressure between the metal shell and the packaging film is lower than an air pressure outside the metal shell. An air pressure inside the packaging film is lower than the air pressure between the metal shell and the packaging film.
Abstract:
Provided are a power battery pack and an electric vehicle. The power battery pack includes: a pack body, where an accommodating space is defined in the pack body, the pack body is provided therein with at least one widthwise cross beam or lengthwise cross beam, the widthwise cross beam extends along a width direction of the power battery pack, the lengthwise cross beam extends along a length direction of the power battery pack, and the accommodating space is divided into a plurality of accommodating chambers by the at least one widthwise cross beam or lengthwise cross beam; and a plurality of cells, disposed in the pack body and directly arranged in the accommodating chambers, where at least one cell is arranged in each accommodating chamber to form a cell array.
Abstract:
A cell, a power battery pack, and an electric vehicle are provided. The cell includes a cell body, and the cell body has a length L, a width H and a thickness D. The length L of the cell body is greater than the width H, the width H of the cell body is greater than the thickness D, the length L of the cell body is greater than 600 mm, and the length L and the width H of the cell body satisfy L/H=4-21.
Abstract:
The present disclosure provides a polymer separator and preparation method thereof, and a lithium-ion battery including the polymer separator and preparation method thereof. The polymer separator includes a porous substrate, a hydrophilic blocking layer, and a porous polar polymer bonding layer. The hydrophilic blocking layer is disposed between the porous substrate and the porous polar polymer bonding layer. Pore walls in the porous polar polymer bonding layer are provided with node structures.
Abstract:
The disclosure provides a polymer composite membrane, a method for preparing same, and a lithium-ion battery including same. The polymer composite membrane includes a polymer base membrane, where the polymer base membrane includes a first surface and a second surface disposed opposite to each other, and the polymer composite membrane further includes a first ceramic layer, a first heat-resistant fiber layer, and a first bonding layer disposed sequentially from inside out on the first surface of the polymer base membrane, where materials of the first heat-resistant fiber layer contain a first polymeric material and a second polymeric material.
Abstract:
A solar cell module, comprising an upper cover plate, a front adhesive layer, a cell, a back adhesive layer and a back plate superposed in sequence, a secondary grid line being disposed on the cell, a conductive wire comprising a metal wire being disposed between the front adhesive layer and a front surface of the cell, a welding layer disposed on a welding position where the conductive wire and the secondary grid line are welded, the welding layer being an alloy containing Sn, Bi and at least one of Cu, In, Ag, Sb, Pb and Zn, in which an amount of Bi is 15 to 60 weight percent.