Methods for particle micronization and nanonization by recrystallization
from organic solutions sprayed into a compressed antisolvent
    1.
    发明授权
    Methods for particle micronization and nanonization by recrystallization from organic solutions sprayed into a compressed antisolvent 失效
    通过从喷射到压缩抗溶剂中的有机溶液重结晶进行颗粒微粉化和纳米化的方法

    公开(公告)号:US5874029A

    公开(公告)日:1999-02-23

    申请号:US723463

    申请日:1996-10-09

    摘要: A method and an apparatus useful for the production of microparticles and nanoparticles are disclosed in which a compressed fluid and a solution including a solvent and a solute are introduced into a nozzle to produce a mixture. The mixture is then passed out of the nozzle to produce a spray of atomized droplets. The atomized droplets are contacted with a supercritical antisolvent to cause depletion of the solvent in the droplets so that particles are produced from the solute. Preferably, these particles have an average diameter of 0.6 .mu.m or less. The invention can be used in the pharmaceutical, food, chemical, electronics, catalyst, polymer, pesticide, explosives, and coating industries, all of which have a need for small-diameter particles.

    摘要翻译: 公开了一种用于生产微粒和纳米颗粒的方法和装置,其中将压缩流体和包含溶剂和溶质的溶液引入喷嘴中以产生混合物。 然后将混合物从喷嘴中排出以产生雾化液滴的喷雾。 雾化的液滴与超临界反溶剂接触以引起液滴中溶剂的消耗,使得从溶质中产生颗粒。 优选地,这些颗粒的平均直径为0.6μm以下。 本发明可用于制药,食品,化工,电子,催化剂,聚合物,农药,爆炸物和涂料工业,所有这些都需要小直径颗粒。

    Methods for a particle precipitation and coating using near-critical and
supercritical antisolvents
    2.
    发明授权
    Methods for a particle precipitation and coating using near-critical and supercritical antisolvents 失效
    使用近临界和超临界反溶剂进行颗粒沉淀和涂层的方法

    公开(公告)号:US5833891A

    公开(公告)日:1998-11-10

    申请号:US805215

    申请日:1997-02-27

    摘要: Improved methods and apparatus for particle precipitation and coating using near- or supercritical fluid conditions are described. A fluid dispersion having a continuous phase dispersant and at least one precipitatable substance therein is contacted with a supercritical fluid (SCF) antisolvent so as to generate focused high frequency antisolvent sonic waves, breaking up the dispersion into extremely small droplets; the enhanced mass transfer rates between the droplets and the antisolvent causes precipitation of very small particles on the order of 0.1-10 .mu.m. In coating processes, a turbulent fluidized flow of core particles is created using an SCF antisolvent in an enclosed zone. The core particles are contacted therein at near- or supercritical conditions by a fluid dispersion containing a dispersant together with a precipitatable substance. The antisolvent depletes the dispersant and the substance is precipitated onto the fluidized core particles. In another aspect of the invention, a process for preparing and administering a medicament using only a single container is provided. In such method, a fluid dispersion having a dispersant with the medicament therein is contacted with an antisolvent at near- or supercritical conditions within a use container, so as to directly precipitate small particles of the medicament in the container. The antisolvent is then removed and the use container is sealed with the medicament particles therein. Thereafter, dose(s) of the medicament can be withdrawn from the use container and administered to a patient.

    摘要翻译: 描述了使用近或超临界流体条件改进颗粒沉淀和涂层的方法和装置。 具有连续相分散剂和至少一种可沉淀物质的流体分散体与超临界流体(SCF)反溶剂接触,以产生聚焦的高频反溶剂声波,将分散体分解成极小的液滴; 液滴和抗溶剂之间的增强的传质速率导致非常小的颗粒的沉淀约0.1-10μm。 在涂覆过程中,使用封闭区域中的SCF反溶剂产生核心颗粒的湍流流化流。 核心颗粒在近或超临界条件下通过含有分散剂和可沉淀物质的流体分散体接触。 反溶剂消耗分散剂,物质沉淀在流化核心颗粒上。 在本发明的另一方面,提供了仅使用单一容器制备和施用药物的方法。 在这种方法中,将具有药物的分散剂的流体分散体与使用容器内的近临界或超临界条件下的反溶剂接触,从而将药物的小颗粒直接沉淀在容器中。 然后将抗溶剂除去,并将使用容器用其中的药物颗粒密封。 此后,药物的剂量可以从使用容器中取出并给予患者。

    Sulfoalkyl ether-alkyl ether cyclodextrin derivatives

    公开(公告)号:US20060258537A1

    公开(公告)日:2006-11-16

    申请号:US11413597

    申请日:2006-04-28

    摘要: A sulfoalkyl ether-alkyl ether cyclodextrin (SAE-AE-CD) derivative is provided. The SAE-AE-CD possesses advantages over known SAE-CD and AE-CD derivatives as well as over the parent cyclodextrin by being more water soluble and less membrane disturbing. The SAE-AE-CD includes at least one sulfoalkyl ether group and at least one alkyl ether group even though the degree of substitution for the functional groups can be different. The SAE functional group can be present in molar excess over the AE functional group and vice versa. The total degree of substitution of the cyclodextrin, with respect to both functional groups, can be varied such that a minority or a majority of the hydroxyl moieties of the CD are derivatized. The SAE-AE-CD derivative can be used to solubilize compounds with insufficient water solubility. In some cases, they also stabilize compounds in solution against degradation or to solubilize degradation products formed during degradation. In addition, SAE-AE-CD can also be used for other purposes such as osmotic agents, agents used to mask the taste of problematic drugs. Surprisingly, while AE-CDs are known to be toxic by being membrane disturbing, SAE-AE-CDs are less membrane disturbing and therefore have greater safety.