Abstract:
A system for storing a pressurized gas in a motor vehicle is provided, having a storage container and at least one thermally activatable safety valve for emptying the storage container. The safety valve activates automatically at a corresponding high temperature. The storage container has an additional activatable emptying device, which has an interface for an external energy source. The interface can be connected to the external energy source in order to empty the storage container in a targeted manner. Also provided is a method for emptying a storage container for a pressurized gas in a motor vehicle.
Abstract:
A method is provided for filling a fuel storage system of a motor vehicle with fuel at a relatively high pressure. The fuel storage system has a main tank, which can be filled by way of a main filling line until a limit pressure has been reached, and an auxiliary storage device. If the filling line is connected to a supply station, which provides fuel at a pressure exceeding the tank limit pressure, a tank shut-off valve provided in the filling line will be closed in time before the limit pressure is reached in the main tank and an auxiliary tanking valve is opened in an auxiliary storage device filling line branching off from the main filling line upstream of the tank shut-off valve and leading to the auxiliary storage device. The auxiliary storage device is configured to receive fuel at a higher pressure than the above-mentioned tank limit pressure. The auxiliary storage device is connected downstream of a shutoff valve, which is provided in a supply line leading to a consuming device and which is closed during a filling operation of the main tank, to the supply line such that the consuming device can be operated from the auxiliary storage device even when the shut-off valve is closed.
Abstract:
The technology disclosed by the invention relates to a pressure vessel system for a motor vehicle for storing fuel, comprising a plurality of pressure vessels (100) that are combined to a pressure vessel assembly (10), the pressure vessels (100), when mounted, being arranged substantially in parallel relative to each other, and the pressure vessels (100) being fluidically interconnected via a common fuel line (200).
Abstract:
A pressure vessel system has a pressure vessel for storing gaseous fuel, a fuel line, and a total-pressure sensor for measuring a total pressure of the fuel at a position within the fuel line. This makes it possible for various functions, such as the control of power reduction, for example, to be performed more accurately than if only static pressure were being used. The technology disclosed here also relates to an energy supply arrangement having such a pressure vessel system and having an energy converter, such as a fuel cell, for example.
Abstract:
A cryogenic pressure container for a motor vehicle has an inner container and an outer container. An evacuated space is arranged between the inner container and the outer container at least in some regions. The inner container has a synthetic material layer. A barrier layer is arranged at least in some regions between the synthetic material layer and the evacuated space. The barrier layer is designed and arranged so as to at least reduce the transfer of constituents leaking out of the synthetic material layer into the evacuated space, wherein a gap is formed at least in some regions between the barrier layer and the synthetic material layer.
Abstract:
A vehicle tank system for storing a fuel in an extremely cold state is provided. The vehicle tank system includes an inner tank that accommodates the fuel and an outer skin that surrounds the inner tank to form an insulation layer approximately constituting a vacuum. The vehicle tank system also includes a vacuum pump that is permanently provided in the vehicle and is connected to the insulation layer. The vacuum pump is configured to increase the quality of the vacuum if the quality of the vacuum does not meet predetermined requirements.