Abstract:
A charging cable identification system is provided for a vehicle driven at least partially electrically, wherein the vehicle has an energy store that can be connected to an electrical energy source by a charging cable. The charging cable system has a control unit that is configured to enable or prevent the starting of the vehicle motor. The control unit is also configured to detect, prior to every event that is or can be predetermined, whether the charging cable is in the vehicle, and if the control unit detects that the charging cable is not in the vehicle, the control unit prevents the vehicle motor from starting.
Abstract:
A method for at least partially compensating for a temperature-induced rise in pressure in a fuel-cell system includes providing a fuel-cell system that has an anode supply path that establishes a fluidic connection between a fuel-cell stack and at least one fuel-source, and an anode-side stack shut-off valve in the anode supply path, the anode-side stack shut-off valve prohibiting the supply of fuel to the fuel-cell stack from an anode section of the anode supply path. The fuel-cell system also has an excess-pressure valve in the anode section, the excess-pressure valve conducting fuel away out of the anode section if the pressure in the anode section exceeds a tripping pressure. In the shut-down state, the pressure in the anode section rises due to warming of the fuel. The anode-side stack shut-off valve is opened to relieve the pressure before the rising pressure in the anode section reaches the tripping pressure.
Abstract:
A system for storing a pressurized gas in a motor vehicle is provided, having a storage container and at least one thermally activatable safety valve for emptying the storage container. The safety valve activates automatically at a corresponding high temperature. The storage container has an additional activatable emptying device, which has an interface for an external energy source. The interface can be connected to the external energy source in order to empty the storage container in a targeted manner. Also provided is a method for emptying a storage container for a pressurized gas in a motor vehicle.
Abstract:
A method for supplying at least one fuel cell of a fuel cell system of the motor vehicle with fuel includes ascertaining or predicting an indication value which is indicative of the real and/or possible mass flow of the withdrawal of fuel from a pressure-vessel system of the motor vehicle and closing at least one tank shut-off valve when the indication value is equal to or falls below a limiting value.
Abstract:
A two-track multi-axle motor vehicle including at least two fuel tanks in which a fuel for producing driving energy for a vehicle drive unit can be stored under high pressure of the order of magnitude of 300 bar and more is provide. Each tank includes a safety valve device having a temperature-sensitive element monitoring only a partial region of the tank surface. The safety valve device allows at least a partial quantity of the stored fuel to escape from the respective tank at a higher temperature, which can occur, for example, in the case of a fire. The temperature-sensitive elements of at least two tanks are arranged here in such a manner that the distance between a left-side wheel (RL) of that vehicle axle, in the vicinity of which the at least two fuel tanks are arranged in the vehicle, and the temperature-sensitive element closest to the left-side wheel (RL) does not significantly differ from the distance of the other of the two temperature-sensitive elements from the right-side wheel (RR) of the vehicle axle.
Abstract:
A method is provided for filling a fuel storage system of a motor vehicle with fuel at a relatively high pressure. The fuel storage system has a main tank, which can be filled by way of a main filling line until a limit pressure has been reached, and an auxiliary storage device. If the filling line is connected to a supply station, which provides fuel at a pressure exceeding the tank limit pressure, a tank shut-off valve provided in the filling line will be closed in time before the limit pressure is reached in the main tank and an auxiliary tanking valve is opened in an auxiliary storage device filling line branching off from the main filling line upstream of the tank shut-off valve and leading to the auxiliary storage device. The auxiliary storage device is configured to receive fuel at a higher pressure than the above-mentioned tank limit pressure. The auxiliary storage device is connected downstream of a shutoff valve, which is provided in a supply line leading to a consuming device and which is closed during a filling operation of the main tank, to the supply line such that the consuming device can be operated from the auxiliary storage device even when the shut-off valve is closed.
Abstract:
A method for reducing the potential hazard of a number of vehicles with heterogenous drives includes receiving on a backend server hazard data of the vehicles which includes current fill state data of at least one energy store and the current position of the respective vehicles, identifying on a backend server hazard situation data comprising the position and the type of the hazard situation, evaluating on the backend server the hazard data of the vehicles with respect to the hazard situation data, and automatically initiating at least one protective measure corresponding to the evaluated hazard data.
Abstract:
A pressure vessel system for a motor vehicle has at least one pressure vessel, to which an extraction line is connected. The extraction line has a connection point, to which a connection line leading to a consumer is connected. The connection point of the extraction line includes a first coupling part of a quick coupling, to which a second coupling part of the quick coupling, arranged on the connection line, is connected. The first coupling part has a non-return valve, which closes the extraction line when the second coupling part is decoupled.
Abstract:
A pressure vessel stores fuel. The pressure vessel includes a liner, a fiber-reinforced layer, at least one end piece, and at least one outlet. The fiber-reinforced layer surrounds the liner, at least in some regions. The end piece is covered by the fiber-reinforced layer, at least in some regions. The at least one outlet is used to carry fuel that has collected in a boundary layer between the liner and the fiber-reinforced layer and is to be drained. The outlet surrounds the end piece, at least in some sections. The outlet is arranged and formed in such a way that the fuel to be drained escapes from the boundary layer into the outlet.
Abstract:
A thermally activatable safety valve has at least one microwave transmitter and microwave transmitter component. The microwave transmitter and/or the microwave transmitter component is designed to heat at least one thermally activatable opening element.