摘要:
According to one aspect of the invention, a method for manufacturing a hot gas path component of a turbine is provided, the method including forming cooling channels in a surface of a member. The method also includes disposing a layer on the surface of the member to enclose the cooling channels, the layer being disposed on a portion of the member to be cooled and bonding the layer to the surface, wherein bonding comprises heating the member and the layer.
摘要:
Various embodiments of the disclosure include a component, methods of forming components, and methods of cooling components. In some embodiments, a component is disclosed including: a body; a microchannel extending through a portion of the body; a thermal barrier coating (TBC) covering a portion of the microchannel; and a marker member extending from the microchannel through the TBC or from an end of the microchannel, the marker member indicating a location of the microchannel in the body.
摘要:
A method for manufacturing a cooling passage in a component of a machine is described. The method may include: forming a channel in a surface of the component, the channel having a predetermined configuration; forming a cover wire, the cover wire having a predetermined configuration based on the predetermined configuration of the channel; nesting the cover wire in the channel; and welding the nested cover wire to the component such that the channel is enclosed.
摘要:
Various embodiments of the disclosure include a component, methods of forming components, and methods of cooling components. In some embodiments, a component is disclosed including: a body; a microchannel extending through a portion of the body; a thermal barrier coating (TBC) covering a portion of the microchannel; and a marker member extending from the microchannel through the TBC or from an end of the microchannel, the marker member indicating a location of the microchannel in the body.
摘要:
According to one aspect of the invention, a method for manufacturing a hot gas path component of a turbine is provided, the method including forming cooling channels in a surface of a member. The method also includes disposing a layer on the surface of the member to enclose the cooling channels, the layer being disposed on a portion of the member to be cooled and bonding the layer to the surface, wherein bonding comprises heating the member and the layer.
摘要:
An apparatus and process for depositing an overlay weld on a substrate in a manner that reduces dilution of the substrate material. A consumable electrode is positioned in proximity to the surface of the substrate, and an electrical potential is applied between the electrode and substrate to generate an electrical arc therebetween. The arc melts the electrode and forms a molten spray that deposits on the substrate surface. Energy of the electric arc is absorbed to reduce the temperature at the substrate surface by feeding an additional filler material into the electric arc toward its center axis. The filler material continuously melts prior to reaching the center axis of the electric arc, and the electrode and filler materials are simultaneously deposited to form the overlay weld on the substrate. Sufficient energy is absorbed by the filler material to reduce intermixing between the overlay weld and the substrate.
摘要:
A process of welding an article and a welded turbine blade are disclosed. The process includes fusion welding over a primary symmetry line determined from a center of gravity on a first side of the article or blade and fusion welding over the primary symmetry line determined from the center of gravity on a second side of the article or blade. The fusion treating includes multiple fusion treatments.
摘要:
A method of fabricating a component and a fabricated component are disclosed. The method includes depositing a material to a component and manipulating the material to form a boundary region and a filler region for desired properties. The component includes the boundary region and the filler region, thereby having the desired properties.
摘要:
A method of welding alloys having a ductility drop temperature range to limit strain-age cracking. The method involves the use of a welding device to weld a weld area of an article while maintaining temperatures throughout the weld area and a heat affected zone adjacent the weld area within a non-crack sensitive temperature range that is above a ductility drop temperature range of the alloy being welded. During welding, the temperatures of the weld area and the heat affected zone are predominantly controlled with heat input from the welding device. Once the welding has been terminated, the weld area and the heat affected zone are cooled from the non-crack sensitive temperature range through the ductility drop temperature range to a temperature below the ductility drop temperature range of the alloy.
摘要:
A filler metal chemistry includes an amount of chromium weight of between about 9.0% and about 16% by weight, an amount of cobalt of between about 7.0% and about 14% by weight, an amount of molybdenum of between about 10% and about 20% by weight, an amount of iron of between about 1.0% and about 5.0% by weight, an amount of aluminum of between about 0.05% and about 0.75% by weight, an amount of titanium of between about 0.5% and about 2.0% by weight, an amount of manganese not to exceed 0.8% by weight, an amount of carbon of between 0.02% and about 0.10% by weight, an amount of titanium+aluminum of between about 0.55% and 2.75% by weight, and an amount of nickel.