摘要:
A computed tomography reconstruction method includes concurrently emitting radiation from at least two x-ray sources (14), switching the output state of each of the at least two x-ray sources (14) within a plurality of respective cross scatter sampling intervals (50, 52, 54, 56) and detecting with a corresponding one of the sets of detectors (24) cross scatter radiation emitted by the other at least two x-ray sources (14), wherein the cross scatter sampling intervals are angularly spaced over a plurality of frames to allow the at least two x-ray sources (14) to concurrently emit radiation throughout at least one frame, deriving scatter correction data for each set of detectors (24) from corresponding cross scatter samples, scatter correcting the projection data with corresponding scatter correction data, and reconstructing the scatter corrected projection data to generate at least one image.
摘要:
A computed tomography reconstruction method includes concurrently emitting radiation from at least two x-ray sources (14), switching the output state of each of the at least two x-ray sources (14) within a plurality of respective cross scatter sampling intervals (50, 52, 54, 56) and detecting with a corresponding one of the sets of detectors (24) cross scatter radiation emitted by the other at least two x-ray sources (14), wherein the cross scatter sampling intervals are angularly spaced over a plurality of frames to allow the at least two x-ray sources (14) to concurrently emit radiation throughout at least one frame, deriving scatter correction data for each set of detectors (24) from corresponding cross scatter samples, scatter correcting the projection data with corresponding scatter correction data, and reconstructing the scatter corrected projection data to generate at least one image.
摘要:
A method includes scanning a region of interest, during a contrast agent based perfusion scan, at a predetermined temporal sampling rate during contrast agent uptake in the region of interest, and generating time frame data indicative of the scanned region of interest. The method further includes identifying a predetermined change in an amount of the contrast agent in the region of interest from the time frame data. The method further includes scanning the region of interest at a lower temporal sampling rate, which is lower than the temporal sampling rate during the contrast agent uptake, in response to identifying the predetermined change in the amount of the contrast agent in the region of interest.
摘要:
A method is disclosed that includes decomposing, with a decomposer, agent-based time series projection data for an object or a subject into at least an agent based component. A projection data decomposer includes a time series decomposer that determines agent-based projection data based on agent-based time series projection data based on at least two energy dependent components. A computer readable storage medium containing instructions which, when executed by a computer, cause the computer to perform the act of determining an agent-based component of agent-based time series projection data utilizing at least two components of the agent-based time series projection is provided.
摘要:
The invention relates to an isononyl ester or isononyl ester mixture of an epoxidized fatty acid or an epoxidized fatty acid mixture, the fatty acid or fatty acid mixture being extracted from tall oil or linseed oil and the average number of epoxide groups per fatty acid being greater than 1.00.
摘要:
Computed tomography (CT) reconstruction includes reconstructing an axially extended reconstructed image from a measured cone beam x-ray projection data set (Pm), optionally having an off-center geometry. The reconstructing is performed for an extended volume (eFOV) comprising a reconstructable volume (rFOV) of the measured cone beam x ray data set that is extended along the axial direction. The projection data set may be weighted in the volume domain. Iterative reconstruction may be used, including initializing a constant volume and performing one or more iterations employing a first iterative update followed by one or more iterations employing a second, different iterative update. Alternatively, backprojection filtration (BPF) reconstruction may be used, including transforming the projection data set to a new geometry including finite differences between neighboring projection views and performing BPF using Hilbert filtering along a plurality of different directions and averaging the resultant reconstructed images to generate the final reconstructed image.
摘要:
A method of registering a 4D contrast enhanced image data set, wherein the 4D contrast enhanced image data set includes image data of the same volume of interest acquired at different timeframes with changing contrast enhancement, the volume of interest includes moving structure, and the different timeframes correspond to a predetermined motion phase of interest in different motion cycles of the moving structure, the method, comprising: registering image data corresponding to a plurality of the different timeframes with reference image from one of the timeframes.
摘要:
The invention relates to a method for producing a product mixture (2) by means of the technical hydroformylation of a hydrocarbon stream (1) that contains isobutene, and for separating the product mixture (2) that is obtained, as well as to a device for the claimed method and to the use of a claimed device. The problem addressed thereby is that of providing a method and an associated device that allow the amount of high-boiling substances in the product mixture (2) to be kept as low as possible and thus the yield of the reaction to be increased. The problem is solved by the use of a nano-filtration device (M) for separating the catalyst from the product mixture (2), said device having especially high permeability to 3-methylbutanoic acid.
摘要:
The present invention relates to the use of diisononyl terephthalate (DINT) as plasticizer for enhancing the low-temperature flexibilization and/or for enhancing the permanence in polymer compositions for thermoplastic applications.