摘要:
Methods, apparatuses and computer readable mediums for generating a volume visualization image based on multi-energy computed tomography data are provided. In one method, an image is rendered based on a multi-dimensional graphical representation of the computed tomography data. The computed tomography data includes at least two different energy image data sets and the multi-dimensional graphical representation represents intensity values of each of the at least two different energy image data sets.
摘要:
A method and system for automatic aortic valve calcification evaluation is disclosed. A patient-specific aortic valve model in a 3D medical image volume, such as a 3D computed tomography (CT) volume. Calcifications in a region of the 3D medical image volume defined based on the aortic valve model. A 2D calcification plot is generated that shows locations of the segmented calcifications relative to aortic valve leaflets of the patient-specific aortic valve model. The 2D calcification plot can be used for assessing the suitability of a patient for a Transcatheter Aortic Valve Replacement (TAVI) procedure, as well as risk assessment, positioning of an aortic valve implant, and selection of a type of aortic valve implant.
摘要:
A device for planning a transcatheter aortic valve implantation is disclosed. The device includes a segmentation module for segmenting the aorta ascendens with the aorta annulus, the aortic valves and the coronary ostia as well as the left ventricle; a determination module, which determines on the basis of the segmented data the aorta annulus plane and from this one or more angiography projections for setting an angiography device, with which the aorta annulus and the coronary ostia are able to be detected in the optimum manner for positioning the transcatheter heart valve; and an output module that outputs this information. The proposed device supports the user in the planning of a transcatheter aortic valve implantation.
摘要:
A method and a data-processing system are disclosed for determining the proportion of calcium in coronary arteries using image data from CT angiography. In at least one embodiment of the method, anatomical landmarks are detected in the image data in the region of the heart and coronary arteries are segmented taking into account the detected landmarks. Regions with an increased HU value compared to a contrast agent surroundings are segmented in the segmented coronary arteries. A proportion of calcium respectively is calculated from the segmented regions for one or more of the segmented coronary arteries. At least the last two steps are carried out fully automatically by a data-processing system. Weighting factors for the individual regions are used when calculating the proportion of calcium, which weighting factors depend on both the threshold for segmenting the respective region and the volume of said region. The method and the data-processing system of at least one embodiment allow the dose exposure of the patient to be reduced and reduce the time expenditure of the user for determining the proportion of calcium.
摘要:
A method and a workstation are disclosed for visualizing a three-dimensional image data record having a multiplicity of voxels of a heart of a patient, recorded with the aid of an x-ray CT examination carried out with contrast agent present in the bloodstream. In at least one embodiment, the method includes saving the CT image data record including a multiplicity of voxels defined by absorption values, determining the voxels associated with the chamber of the heart by segmenting the chambers of the heart filled with blood containing the contrast agent, removing the image information from the voxels associated with the chambers of the heart, calculating a two-dimensional virtual projection from the remaining CT image data record, and displaying the virtual two-dimensional projection.
摘要:
In a client/server-based image archiving, image retrieval and image rendering system and method for storage, retrieval and graphical visualization of multi-dimensional digital image data such as assessment of medical image data, the detail depth level of volume data received via a data transfer network, to be shown in graphical form, is adjustable by the compressed volume data of subjects to be presented being stored with a highest-possible resolution (predetermined by an imaging system) in a databank administered by a server and directly accessibly only by this server. Although the client/server-based image archiving, image retrieval and image rendering system is able to offer volume data with this highest possible resolution to any point of the system at the request of a screen client, volume data are transferred to a screen client in a compressed form only up to a specific, spatially-variable, region-specific, or subject-specific detail depth level and are presented at the requesting screen client in graphical form. Complicated image rendering and image post-processing algorithms are implemented by the server.
摘要:
A method and system for automatic aortic valve calcification evaluation is disclosed. A patient-specific aortic valve model in a 3D medical image volume, such as a 3D computed tomography (CT) volume. Calcifications in a region of the 3D medical image volume defined based on the aortic valve model. A 2D calcification plot is generated that shows locations of the segmented calcifications relative to aortic valve leaflets of the patient-specific aortic valve model. The 2D calcification plot can be used for assessing the suitability of a patient for a Transcatheter Aortic Valve Replacement (TAVI) procedure, as well as risk assessment, positioning of an aortic valve implant, and selection of a type of aortic valve implant.
摘要:
A method and system for detection of native and bypass coronary ostia in a 3D volume, such as a CT volume, is disclosed. Native coronary ostia are detected by detecting a bounding box defining locations of a left native coronary ostium and a right native coronary ostium in the 3D volume using marginal space learning (MSL), and locally refining the locations of the left native coronary ostium and the right native coronary ostium using a trained native coronary ostium detector. Bypass coronary ostia are detected by segmenting an ascending aorta surface mesh in the 3D volume, generating a search region of a plurality of mesh points on the ascending aorta surface mesh based on a distribution of annotated bypass coronary ostia in a plurality of training volumes, and detecting the bypass coronary ostia by searching the plurality of mesh points in the search region.
摘要:
A method and system for isolating the heart in a 3D volume, such as a cardiac CT volume, for patients with coronary artery bypasses is disclosed. An initial heart isolation mask is extracted from a 3D volume, such as a cardiac CT volume. The aortic root and ascending aorta are segmented in the 3D volume, resulting in an aorta mesh. The aorta mesh is expanded to include bypass coronary arteries. An expanded heart isolation mask is generated by combining the initial heart isolation mask with an expanded aorta mask defined by the expanded aorta mesh.
摘要:
A method and system for isolating the heart in a 3D volume, such as a cardiac CT volume, for patients with coronary artery bypasses is disclosed. An initial heart isolation mask is extracted from a 3D volume, such as a cardiac CT volume. The aortic root and ascending aorta are segmented in the 3D volume, resulting in an aorta mesh. The aorta mesh is expanded to include bypass coronary arteries. An expanded heart isolation mask is generated by combining the initial heart isolation mask with an expanded aorta mask defined by the expanded aorta mesh.