摘要:
A system and method are disclosed for providing in-situ monitoring of an oxidized ARC layer disposed over an ARC layer. By monitoring the thickness of the oxidized portion of the ARC layer during semiconductor processing, one or more process control parameters may be adjusted to help achieve a desired oxidized portion thickness. As a result, the number of process steps required to achieve the desired oxidized portion thickness may be reduced, providing a more efficient and economical process
摘要:
Methods of generating wide process range libraries for metrology are described. For example, a method includes generating a first library having a first process range for a first parameter. A second library is generated having a second process range for the first parameter. The second process range is overlapping with the first process range. The second library is stitched to the first library to generate a third library having a third process range for the first parameter. The third process range is wider than each of the first and second process ranges.
摘要:
The optimization of an optical metrology model for use in measuring a wafer structure is evaluated. An optical metrology model having metrology model variables, which includes profile model parameters of a profile model, is developed. One or more goals for metrology model optimization are selected. One or more profile model parameters to be used in evaluating the one or more selected goals are selected. One or more metrology model variables to be set to fixed values are selected. One or more selected metrology model variables are set to fixed values. One or more termination criteria for the one or more selected goals are set. The optical metrology model is optimized using the fixed values for the one or more selected metrology model variables. Measurements for the one or more selected profile model parameters are obtained using the optimized optical metrology model. A determination is then made as to whether the one or more termination criteria are met by the obtained measurements.
摘要:
A system for examining a patterned structure formed on a semiconductor wafer using an optical metrology model includes a first fabrication cluster, a metrology cluster, an optical metrology model optimizer, and a real time profile estimator. The first fabrication cluster processes a wafer, the wafer having a first patterned and a first unpatterned structure. The metrology cluster measures diffraction signals off the first patterned and first unpatterned structure. The metrology model optimizer optimizes an optical metrology model of the first patterned structure. The real time profile estimator creates an output comprising underlying film thickness, critical dimension, and profile of the first patterned structure.
摘要:
A profile model to characterize a structure to be examined using optical metrology is evaluated by displaying a set of profile parameters that characterizes the profile model. Each profile parameter has a range of values for the profile parameter. For each profile parameter having a range of values, an adjustment tool is displayed for selecting a value for the profile parameter within the range of values. A measured diffraction signal, which was measured using an optical metrology tool, is displayed. A simulated diffraction signal, which was generated based on the values of the profile parameters selected using the adjustment tools for the profile parameters, is displayed. The simulated diffraction signal is overlaid with the measured diffraction signal.
摘要:
The profile of a structure having a region with a spatially varying property is modeled using an optical metrology model. A set of profile parameters is defined for the optical metrology model to characterize the profile of the structure. A set of layers is defined for a portion the optical metrology model that corresponds to the region of the structure with the spatially varying property, each layer having a defined height and width. For each layer, a mathematic function that varies across at least a portion of the width of the layer is defined to characterize the spatially varying property within a corresponding layer in the region of the structure.
摘要:
The profile of a single feature formed on a wafer can be determined by obtaining an optical signature of the single feature using a beam of light focused on the single feature. The obtained optical signature can then be compared to a set of simulated optical signatures, where each simulated optical signature corresponds to a hypothetical profile of the single feature and is modeled based on the hypothetical profile.
摘要:
One or more profile parameters of a structure fabricated on a wafer in a wafer application are determined by developing a correlation between a set of profile models and one or more key profile shape variables. The wafer application has one or more process steps and one or more process parameters. Each profile model is defined using a set of profile parameters to characterize the shape of the structure. Different sets of profile parameters define the profile models in the set. The one or more key profile shape variables include one or more profile parameters or one or more process parameters. A value of at least one key profile shape variable of the process step of the wafer application to be used in fabricating the structure is determined. One profile model is selected from the set of profile models based on the determined correlation and the value of the at least one determined key profile shape variable. The structure is fabricated using the process step and the value of the at least one determined key profile shape variable determined. A measured diffraction signal off the fabricated structure is obtained. One or more profile parameters of the fabricated structure are determined based on the measured diffraction signal and the selected profile model.
摘要:
The profile of a single feature formed on a wafer can be determined by obtaining an optical signature of the single feature using a beam of light focused on the single feature. The obtained optical signature can then be compared to a set of simulated optical signatures, where each simulated optical signature corresponds to a hypothetical profile of the single feature and is modeled based on the hypothetical profile.
摘要:
The accuracy of a library of simulated-diffraction signals for use in optical metrology of a structure formed on a wafer is evaluated by utilizing an identity relationship inherent to simulated diffraction signals. Each simulated diffraction signal contains at least one set of four reflectivity parameters for a wavelength and/or angle of incidence. One of the four reflectivity parameters is selected. A value for the selected reflectivity parameter is determined using the identity relationship and values of the remaining three reflectivity parameters. The determined value for the selected reflectivity parameter is compared to the value in the obtained set of four reflectivity parameters to evaluate and improve the accuracy of the library. The identity relationship can also be used to reduce the data storage in a library.