摘要:
A fuel cell including an anode-side catalyst coated membrane and a cathode-side catalyst coated membrane. At least a portion of a reduced-permeability layer is disposed between the ionically conductive membrane and the anode-side and cathode-side gas diffusion media, wherein the reduced-permeability layer is formed of a material that has a permeability that is less than a permeability of the ionically conductive member. The reduced-permeability layer may also be formed of a material that is softer than the ionically conductive membrane.
摘要:
A fuel cell including an anode-side catalyst coated diffusion medium and a cathode-side catalyst coated diffusion medium that sandwich an ionically conductive membrane. A sealing material is disposed between the ionically conductive membrane and the anode-side and cathode-side catalyst coated diffusion medium, wherein the sealing material is formed of a material that has a permeability that is less than a permeability of the ionically conductive member. The sealing material may also be formed of a material that is softer than the ionically conductive membrane such that the sealing material may deform and enable an membrane electrode assembly of the fuel cell to be subjected to uniform pressures throughout the assembly.
摘要:
An MEA for a fuel cell that employs multiple catalyst layers to reduce the hydrogen and/or oxygen partial pressure at the membrane so as to reduce the fluoride release rate from the membrane and reduce membrane degradation. An anode side multi-layer catalyst configuration is positioned at the anode side of the MEA membrane. The anode side multi-layer catalyst configuration includes an anode side under layer positioned against the membrane and including a catalyst, an anode side middle layer positioned against the anode side under layer and not including a catalyst and an anode side catalyst layer positioned against the anode side middle layer and opposite to the anode side under layer and including a catalyst, where the amount of catalyst in the anode side catalyst layer is greater than the amount of catalyst in the anode side under layer.
摘要:
An MEA for a fuel cell that employs multiple catalyst layers to reduce the hydrogen and/or oxygen partial pressure at the membrane so as to reduce the fluoride release rate from the membrane and reduce membrane degradation. An anode side multi-layer catalyst configuration is positioned at the anode side of the MEA membrane. The anode side multi-layer catalyst configuration includes an anode side under layer positioned against the membrane and including a catalyst, an anode side middle layer positioned against the anode side under layer and not including a catalyst and an anode side catalyst layer positioned against the anode side middle layer and opposite to the anode side under layer and including a catalyst, where the amount of catalyst in the anode side catalyst layer is greater than the amount of catalyst in the anode side under layer.
摘要:
A method of manufacturing a fuel cell membrane electrode assembly comprising forming and compressing a stack having a plurality of layers in a desired orientation. The layers comprise a membrane, a cathode, an anode, and at least one edge protection layer. The method includes providing at least one mechanical reinforcing layer adjacent the anode or cathode layer, and allowing the electrodes to relax under high heat to remove stress prior to lamination.
摘要:
A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.
摘要:
A process comprising: depositing a liquid bonding layer comprising an ionomer and a solvent over a carrier film; placing a decal substrate over the liquid bonding layer and drying the liquid bonding layer to provide a solid bonding layer comprising the ionomer, and the solid bonding layer bonding the decal substrate and carrier film together.
摘要:
One embodiment of the invention includes a method including providing a cathode catalyst ink comprising a first catalyst, an oxygen evolution reaction catalyst, and a solvent; and depositing the cathode catalyst ink on one of a polymer electrolyte membrane, a gas diffusion medium layer, or a decal backing.
摘要:
One embodiment of the invention includes a method including providing a cathode catalyst ink comprising a first catalyst, an oxygen evolution reaction catalyst, and a solvent; and depositing the cathode catalyst ink on one of a polymer electrolyte membrane, a gas diffusion medium layer, or a decal backing.
摘要:
A technique for fabricating an MEA for a fuel cell that is prepared as a catalyst-coated diffusion media (CCDM). The MEA includes a diffusion media layer having a microporous layer. A catalyst layer is deposited on the microporous layer so that it covers its entire surface. An ionomer layer is sprayed on the catalyst layer. A perfluorinated membrane is sandwiched between one CCDM at the anode side of the MEA and another CCDM at the cathode side of the MEA where the ionomer spray layers face the membrane.