Abstract:
Plating stub resonance in a circuit board may be mitigated by increasing surface roughness of the plating stub conductor. Roughening the plating stub increases its resistance due to the skin effect at higher frequencies, which decreases the quality factor of the transmission line and consequently increases the damping factor, to reduce any resonance that would occur in the plating stub as formed prior to roughening. The surface roughness can be increased in a variety of ways, including chemical processes, by selectively applying a laser beam, or by applying an etch-resistance material in selected locations.
Abstract:
Plating stub resonance in a circuit board may be mitigated by increasing surface roughness of the plating stub conductor. Roughening the plating stub increases its resistance due to the skin effect at higher frequencies, which decreases the quality factor of the transmission line and consequently increases the damping factor, to reduce any resonance that would occur in the plating stub as formed prior to roughening. The surface roughness can be increased in a variety of ways, including chemical processes, by selectively applying a laser beam, or by applying an etch-resistance material in selected locations.
Abstract:
Plating stub resonance in a circuit board may be mitigated by increasing surface roughness of the plating stub conductor. Roughening the plating stub increases its resistance due to the skin effect at higher frequencies, which decreases the quality factor of the transmission line and consequently increases the damping factor, to reduce any resonance that would occur in the plating stub as formed prior to roughening. The surface roughness can be increased in a variety of ways, including chemical processes, by selectively applying a laser beam, or by applying an etch-resistance material in selected locations.
Abstract:
Plating stub resonance in a circuit board may be mitigated by increasing surface roughness of the plating stub conductor. Roughening the plating stub increases its resistance due to the skin effect at higher frequencies, which decreases the quality factor of the transmission line and consequently increases the damping factor, to reduce any resonance that would occur in the plating stub as formed prior to roughening. The surface roughness can be increased in a variety of ways, including chemical processes, by selectively applying a laser beam, or by applying an etch-resistance material in selected locations.
Abstract:
Embodiments of the present invention are directed to shifting the resonant frequency in a high-frequency chip package away from an operational frequency by connecting a capacitance between an open-ended plating stub and ground. One embodiment provides a multi-layer substrate for interfacing a chip with a printed circuit board. A first outer layer provides a chip mounting location. A signal interconnect is spaced from the chip mounting location, and a signal trace extends from near the chip mounting location to the signal interconnect. A chip mounted at the chip mounting location may be connected to the signal trace by wirebonding. A plating stub extends from the signal interconnect, such as to a periphery of the substrate. A capacitor is used to capacitively couple the plating stub to a ground layer.
Abstract:
Packages and methods for mitigating plating stub effects. The semiconductor package includes an interposer substrate having a first side, a second side, a peripheral edge connecting the first side with the second side, a signal line on the first side, and an electrode pad on the first side. A semiconductor element is mounted on the first side of the interposer substrate. The semiconductor element is connected with the electrode pad by the signal line. A terminating resistor is mounted on the interposer substrate. A plating stub, which is located on the interposer substrate, has a first end portion that terminates near the peripheral edge of the interposer substrate and a second end portion that is electrically connected to the electrode. The first end portion is electrically connected through the terminating resistor to an electrical ground.
Abstract:
Methods, apparatuses, and computer program products are disclosed for controlling plating stub reflections in a chip package. In one embodiment, a resonance optimizer determines performance characteristics of a bond wire that connects a chip to a substrate of a semiconductor chip mount. In this embodiment, the resonance optimizer selects, based on the performance characteristics of the bond wire, a line width for an open-ended plating stub that extends from a signal interconnect of the substrate to a periphery of the substrate, The resonance optimizer also generates a design of signal traces for the substrate, where the signal traces include the open-ended plating stub with the selected line width.
Abstract:
Methods, apparatuses, and computer program products are disclosed for controlling plating stub reflections in a chip package. Embodiments include determining, by a resonance optimizer, performance characteristics of a bond wire, the bond wire connecting a chip to a substrate of a semiconductor chip mount; based on the performance characteristics of the bond wire, selecting, by the resonance optimizer, a line width for an open-ended plating stub, the open-ended plating stub extending from a signal interconnect of the substrate to a periphery of the substrate; and generating, by the resonance optimizer, a design of signal traces for the substrate, the signal traces including the open-ended plating stub with the selected line width.
Abstract:
Improving signal quality in a high-frequency chip package by resistively connecting an open-ended plating stub to ground. One embodiment provides a multi-layer substrate for interfacing a chip with a printed circuit board. A conductive first layer provides a chip mounting location. A signal interconnect is spaced from the chip mounting location, and a signal trace extends from near the chip mounting location to the signal interconnect. A chip mounted at the chip mounting location may be connected to the signal trace by wirebonding. A plating stub extends from the signal interconnect, such as to a periphery of the substrate. A resistor is used to resistively couple the plating stub to a ground layer.
Abstract:
Improving signal quality in a high-frequency chip package by resistively connecting an open-ended plating stub to ground. One embodiment provides a multi-layer substrate for interfacing a chip with a printed circuit board. A conductive first layer provides a chip mounting location. A signal interconnect is spaced from the chip mounting location, and a signal trace extends from near the chip mounting location to the signal interconnect. A chip mounted at the chip mounting location may be connected to the signal trace by wirebonding. A plating stub extends from the signal interconnect, such as to a periphery of the substrate. A resistor is used to resistively couple the plating stub to a ground layer.