摘要:
Apparatuses and processes for converting an oxygenate feedstock, such as methanol and dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
摘要:
Apparatuses and processes for converting an oxygenate feedstock, such as methanol and dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
摘要:
Apparatuses and processes for converting an oxygenate feedstock, such as methanol and/or dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
摘要:
Apparatuses and processes for converting an oxygenate feedstock, such as methanol and/or dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
摘要:
In a process for the catalytic conversion of organic oxygenates to hydrocarbons, a feed comprising at least one organic oxygenate is contacted with a zeolite catalyst under conditions effective to produce a hydrocarbon product comprising aromatics, olefins and paraffins. At least a fraction of the hydrocarbon product containing C4+ hydrocarbons, including at least part of the olefins, is then contacted with hydrogen in the presence of a hydrogenation catalyst under conditions effective to saturate at least part of the olefins in the C4+-containing fraction and produce a hydrogenated effluent containing less than 1 wt % olefins. The hydrogenated effluent is useful as a diluent for heavy crude oils.
摘要:
In a process for the catalytic conversion of organic oxygenates to hydrocarbons, a feed comprising at least one organic oxygenate is contacted with a zeolite catalyst under conditions effective to produce a hydrocarbon product comprising aromatics, olefins and paraffins. At least a fraction of the hydrocarbon product containing C4+ hydrocarbons, including at least part of the olefins, is then contacted with hydrogen in the presence of a hydrogenation catalyst under conditions effective to saturate at least part of the olefins in the C4+-containing fraction and produce a hydrogenated effluent containing less than 1 wt % olefins. The hydrogenated effluent is useful as a diluent for heavy crude oils.
摘要:
A multi-stage catalytic olefin upgrading technique for converting lower olefinic feedstock to heavier liquid hydrocarbon product. The invention provides a fluid bed continuous primary stage reaction zone with shape selective medium pore zeolite oligomerization catalyst particles to convert at least a portion of the lower olefinic components to intermediate olefinic hydrocarbons containing olefinic and aromatic components; cooling primary stage reaction effluent to condense at least a portion of the intermediate hydrocarbons; feeding a second olefinic stream to a serially arranged multi-reactor secondary stage for upgrading lower olefins; quenching partially upgraded secondary stage olefins with primary stage liquid; and further contacting the quenched mixture including aromatics from the primary stage with shape selective medium pore zeolite olgiomerization catalyst in a high pressure fix bed secondary stage distillate mode catalytic reactor at elevated temperature and high prssure to provide a heavier hydrocarbon effluent stream comprising distillate hydrocarbons.
摘要:
A improved process is provided for upgrading light olefins from hydrocarbon cracking, such as light crackate gas containing ethene, propene and other C.sub.1 -C.sub.4 lower aliphatics. The process comprises the steps of: maintaining an oligomerization reactor containing a fluidized bed of zeolite catalyst particles in a low severity reactor bed at oligomerization temperature conditions by passing hot olefinic gas upwardly through the fluidized catalyst bed under throughput rate conditions sufficient to convert at least 50 wt % of lower olefins to hydrocarbons in the C.sub.5 -C.sub.10 range; maintaining turbulent fluidized bed conditions through the fluidized bed by passing fresh ethene-rich feedstream gas upwardly through the fluidized catalyst bed and adding thereto sufficient recycled light byproduct gas to maintain a minimum gas velocity; cooling reaction effluent from the conversion zone to provide light gas byproduct and liquid hydrocarbon reaction product rich in C.sub.5 -C.sub.9 hydrocarbons; and recycling sufficient light byproduct gas recovered from effluent or maintaining turbulent regime gas velocity in the fluidized bed.
摘要:
A multi-stage catalytic olefin upgrading reactor system for converting lower olefinic feedstock to heavier liquid hydrocarbon product. The novel apparatus includes a fluid bed continuous primary stage reaction zone with shape selective medium pore zeolite oligomerization catalyst particles to convert at least a portion of the lower olefinic components to intermediate olefinic hydrocarbons containing olefinic and aromatic components; means are provided for cooling primary stage reaction effluent to condense at least a portion of the intermediate hydrocarbons, feeding a second olefinic stream to a serially arranged multi-reactor secondary stage for upgrading lower olefins, quenching partially upgraded secondary stage olefins with primary stage liquid, and further contacting the quenched mixture including aromatics from the primary stage with oligomerization catalyst in a high pressure fixed bed secondary stage distillate mode catalytic reactor at elevated temperature and high pressure to provide a heavier hydrocarbon effluent stream comprising distillate hydrocarbons.
摘要:
Oxides of nitrogen (NO.sub.x) emissions from FCC regenerators in complete CO combustion mode are reduced by degrading regenerator performance to increase the coke on regenerated catalyst. High zeolite content cracking catalyst, regenerated to contain more coke, gives efficient conversion of feed and reduces NO.sub.x emissions from the regenerator. Operating with less catalyst, e.g., 30-60% of the normal amount of catalyst in the bubbling dense bed, can eliminate most NO.sub.x emissions while increasing slightly plant capacity and reducing catalyst deactivation.