Abstract:
A flat rolling stock is first rolled in a rolling mill from an initial thickness to an intermediate thickness, and then from the intermediate thickness to a final thickness. In order to roll the rolling stock from the initial thickness to the intermediate thickness, a number of reduction stages is determined and the rolling stock is rolled accordingly. Further, a permissible thickness range for the intermediate thickness is set using technological boundary conditions. The reduction stages are determined such that the intermediate thickness is within the permissible thickness range and either the performance limits of the rolling mill are completely utilized in every reduction stage, or not completely utilized in at least one reduction stage; however, in the event that the number of reduction stages were reduced by one, the intermediate thickness would be outside of the permissible thickness range, although the performance limits of the rolling mill would be completely utilized for all reduction stages.
Abstract:
A flat rolling stock is first rolled in a rolling mill from an initial thickness to an intermediate thickness, and then from the intermediate thickness to a final thickness. In order to roll the rolling stock from the initial thickness to the intermediate thickness, a number of reduction stages is determined and the rolling stock is rolled accordingly. Further, a permissible thickness range for the intermediate thickness is set using technological boundary conditions. The reduction stages are determined such that the intermediate thickness is within the permissible thickness range and either the performance limits of the rolling mill are completely utilized in every reduction stage, or not completely utilized in at least one reduction stage; however, in the event that the number of reduction stages were reduced by one, the intermediate thickness would be outside of the permissible thickness range, although the performance limits of the rolling mill would be completely utilized for all reduction stages.
Abstract:
Method for thermo-mechanical controlled rolling of metal slabs to plates or strips, in which for two successively rolled slabs the time gap between the starts of their rolling phases 1 is always smaller than the sum of the duration of all rolling phases and all cooling phases of the rolling pattern, and in which during rolling the batch it occurs on at least one rolling mill stand several times that a rolling phase applied to one slab or plate or strip is succeeded by a different rolling phase applied on another slab or plate or strip. In the apparatus for thermo-mechanical rolling according to that method the number of storage positions is half the interleave depth of the performed rolling pattern rounded up to an integer.
Abstract:
A method of monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for the reversing working a hot-rolled sheet or hot-rolled strip is disclosed. For the reversing rolling of the hot-rolled sheet or hot-rolled strip a rolling stand is provided. At a starting point, an initial state of the hot-rolled sheet or hot-rolled strip in a model is determined, from which state at least one physical state variable is derived. Further, a cyclical updating of the state during the working of the hot-rolled sheet by using the model of the hot-rolled sheet or hot-rolled strip and the plate rolling train is provided, wherein monitoring of the path of the hot-rolled sheet or hot-rolled strip and operating parameters influencing and/or reproducing the state are taken into account.
Abstract:
Method for influencing relevant quality parameters of a rolling strip, particularly the profile or flatness of the rolling strip, in a roll stand with rolls, by adjusting the crownings of the rolls, i.e., the surface geometry of the rolls in the longitudinal direction of the rolls, wherein the crowning of the rolls is adjusted by an adjustable cooling of the rolls or of their surfaces in longitudinal direction of the rolls. The cooling of the rolls is adjusted by a controller (1) as a function of the actual value (pactual) of the crowning and a predetermined setpoint value (psetpoint) of the crowning.
Abstract:
Disclosed is a rolling mill comprising a roll stand with working rolls, a roll train located at the feeding end of the roll stand, and a control device. The working rolls form a roll gap. The control device triggers the roll stand such that the working rolls rotate at a certain peripheral speed while triggering the roll train located at the feeding end of the roll stand in such a way that the leading edge of the strip-shaped rolling stock reaches the roll gap at a feeding speed that is greater than the peripheral speed. The control device adjusts the peripheral speed and the feeding speed to each other in such a way that a potential angled position of the leading edge relative to the roll gap is at least reduced as a result of said adjustment.
Abstract:
A method of monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for the reversing working a hot-rolled sheet or hot-rolled strip. For the reversing rolling of the hot-rolled sheet or hot-rolled strip a rolling stand is provided. At a starting point, an initial state of the hot-rolled sheet or hot-rolled strip in a model is determined, from which state at least one physical state variable is derived. Further, a cyclical updating of the state during the working of the hot-rolled sheet by using the model of the hot-rolled sheet or hot-rolled strip and the plate rolling train is provided, wherein monitoring of the path of the hot-rolled sheet or hot-rolled strip and operating parameters influencing and/or reproducing the state are taken into account.
Abstract:
The invention relates to rolled material comprising a front and an end. The rolled material is rolled in a roll gap of a roll stand to a first desired measurement, beginning at the front of the rolled material. When the rolled material is being rolled in the roll stand, it is continuously determined by a control computer, which locates the position of the rolled material which is currently in the roll gap. When the position of the rolled material, which is directly in the roll gap, corresponds to a predetermined first modification position of the rolled material, which is arranged between the front of the rolled material and the end of the rolled material, the roller of the rolled material ends at a first desired measurement such that a first step is introduced into the rolled material on the first modification point.
Abstract:
In a rolling train, prior to being rolled, the rolled stock, or slab, produced in an ingot casting process, has the shape of a truncated pyramid with a base area, a top area and four side areas. During a first rolling pass sequence, two opposite side areas of the rolled stock are rolled in a first direction so that all of the cross-sectional areas of the rolled stock oriented transversely with respect to the rolling direction have the same surface area when the sequence ends. The rolled stock is rotated, e.g., through 90°, and during a second rolling pass sequence, the same two opposite side areas of the rolled stock are rolled in a second direction transversely with respect to the first direction. Thus, material of the rolled stock is automatically redistributed to a desired geometry with a high degree of precision and without the use of vertical rolling stands.
Abstract:
In a rolling train, prior to being rolled, the rolled stock, or slab, produced in an ingot casting process, has the shape of a truncated pyramid with a base area, a top area and four side areas. During a first rolling pass sequence, two opposite side areas of the rolled stock are rolled in a first direction so that all of the cross-sectional areas of the rolled stock oriented transversely with respect to the rolling direction have the same surface area when the sequence ends. The rolled stock is rotated, e.g., through 90°, and during a second rolling pass sequence, the same two opposite side areas of the rolled stock are rolled in a second direction transversely with respect to the first direction. Thus, material of the rolled stock is automatically redistributed to a desired geometry with a high degree of precision and without the use of vertical rolling stands.