Abstract:
In one embodiment, a burner for use in synthesis gas production includes multiple burner units each configured to deliver fuel and oxygen to a combustion chamber, each burner unit including an inner outlet pipe configured to deliver fuel and an outer outlet pipe configured to deliver oxygen, the outer outlet pipe concentrically surrounding the inner outlet pipe.
Abstract:
A flow restrictor for use on burners used for combusting gases includes a central disk and opposing cylindrical members extending from opposing sides of the central disk. The central disk includes a central portion having multiple inner openings extending through the central disk and a peripheral portion having multiple outer openings extending through the central disk. Each of the opposing cylindrical members surrounds the central portion and the inner openings of the central disk. The peripheral portion and the outer openings of the central disk are disposed outside of the cylindrical members. Each of the cylindrical members is designed to be attached to an open end of a pipe of a burner.
Abstract:
System and methods for producing synthesis gas are provided. The system includes a reactor and a steam generation system designed to provide precise control of the rate of steam generation to mix steam with fuel gas to produce humidified fuel gas, which is then fed into a combustion chamber of the reactor. The molar ratio of hydrogen to carbon monoxide in the synthesis gas output from the reactor may be accurately controlled by adjusting the humidity of the fuel gas input into the combustion chamber.
Abstract:
System and methods for producing synthesis gas are provided. The system includes a reactor and a steam generation system designed to provide precise control of the rate of steam generation to mix steam with fuel gas to produce humidified fuel gas, which is then fed into a combustion chamber of the reactor. The molar ratio of hydrogen to carbon monoxide in the synthesis gas output from the reactor may be accurately controlled by adjusting the humidity of the fuel gas input into the combustion chamber.
Abstract:
Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.
Abstract:
In one embodiment, a burner for use in synthesis gas production includes multiple burner units each configured to deliver fuel and oxygen to a combustion chamber, each burner unit including an inner outlet pipe configured to deliver fuel and an outer outlet pipe configured to deliver oxygen, the outer outlet pipe concentrically surrounding the inner outlet pipe.
Abstract:
In some embodiments, a system for producing synthesis gas, the system including a reactor including a burner, a combustion chamber, and a catalyst chamber, and a mixer upstream of the reactor configured to mix fuel with steam to produce humidified fuel that is provided to the burner of the reactor.
Abstract:
In some embodiments, a system for producing synthesis gas, the system including a reactor including a burner, a combustion chamber, and a catalyst chamber, and a mixer upstream of the reactor configured to mix fuel with steam to produce humidified fuel that is provided to the burner of the reactor.
Abstract:
Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.