摘要:
Disclosed is an improved solid electrolyte made of an interpenetrating network type solid polymer comprised of two compatible phases: a crosslinked polymer for mechanical strength and chemical stability, and an ionic conducting phase. The highly branched siloxane polymer of the present invention has one or more poly(ethylene oxide) (“PEO”) groups as a side chain. The PEO group is directly grafted to silicon atoms in the siloxane polymer. This kind of branched type siloxane polymer is stably anchored in the network structure and provides continuous conducting paths in all directions throughout the IPN solid polymer electrolyte. Also disclosed is a method of making an electrochemical cell incorporating the electrolyte. A cell made accordingly has an extremely high cycle life and electrochemical stability.
摘要:
Disclosed is an improved solid electrolyte made of an interpenetrating network type solid polymer comprised of two compatible phases: a crosslinked polymer for mechanical strength and chemical stability, and an ionic conducting phase. The highly branched siloxane polymer of the present invention has one or more poly(ethylene oxide) (“PEO”) groups as a side chain. The PEO group is directly grafted to silicon atoms in the siloxane polymer. This kind of branched type siloxane polymer is stably anchored in the network structure and provides continuous conducting paths in all directions throughout the IPN solid polymer electrolyte. Also disclosed is a method of making an electrochemical cell incorporating the electrolyte. A cell made accordingly has an extremely high cycle life and electrochemical stability.
摘要:
Disclosed is a nonaqueous liquid electrolyte comprising poly(siloxane-g-3 ethylene oxide) and its synthesis. This electrolyte provides significant safety, improved electrochemical stability, improved conductivity, lower impedance, and lower manufacturing costs.
摘要:
Disclosed is a nonaqueous and nonvolatile liquid type polymeric electrolyte comprising poly(siloxane-g-ethylene oxide). This electrolyte provides significant safety and stability. The present invention solves the problems of volatility, flammability and chemical reactivity of lithium ion type electrolytes. The disclosed electrolyte exhibits excellent stability, conductivity and low impedance characteristics. The electrolyte comprises a new class of structural siloxane polymers with one or more poly(ethylene oxide) side chains. The inorganic siloxanes comprising the main backbone of the copolymers are thermally very stable and resistant to decomposition by heat. Because the main chain of the disclosed class of electrolytes is an Si—O linkage, initiation of the combustion cycle is inhibited or prevented.
摘要:
The electrolyte includes a cyclic polysiloxane having one or more side chains that each includes a poly(alkylene oxide) moiety and a spacer. Each spacer is positioned between the poly(alkylene oxide) moiety and a silicon on the main chain of the polysiloxane.
摘要:
The electrolyte includes one or more polysiloxanes, one or more alkali metal salts, and one or more silanes. At least one polysiloxane includes side chains having poly(alkylene oxide) moieties. At east one silane includes at least one moiety selected from a first group consisting of an alkyl group, a halogenated alkyl group, an aryl group, a halogenated aryl group, an alkoxy group and an oxyalkylene group and at least one moiety selected from a second group consisting of an alkoxy group, an oxyalkylene group and a carbonate group. In one example, the electrochemical device is a secondary battery.
摘要:
There are provided novel methods of fabricating batteries, particularly rechargeable lithium ion batteries comprising a microporous polymeric gel layer on one or more electrodes of the batteries. The methods include laminating a gellable polymer film to at least one electrode and forming a microporous gellable polymer layer from the laminated film on the electrode. The microporous gellable polymer layer can be produced by extracting plasticizer from the polymer with a solvent. The polymeric gel on the electrode can be formed by exposing the microporous gellable polymer layer to an electrolyte solution which includes a lithium salt.
摘要:
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. Suppression of gas generation is achieved in the cell through the addition of an additive or additives to the electrolyte system of the respective cell, or to the cell whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are preferably based on unsaturated hydrocarbons.
摘要:
The electrochemical device has an electrolyte that includes one or more tetrasiloxanes. The tetrasiloxanes have a backbone with two central silicons and two terminal silicons. A first one of the silicons is linked to a side chain that includes a poly(alkylene oxide) moiety. A second one of the silicons is linked to a side chain that includes a poly(alkylene oxide) moiety or to a side chain that includes a cyclic carbonate moiety. When each of the central silicons is linked to a side chain that includes a poly(alkylene oxide) moiety, each of the central silicons is directly linked to the poly(alkylene oxide) moiety.
摘要:
One example of the disiloxanes include a backbone with a first silicon and a second silicon. The first silicon is linked to a first substituent selected from a group consisting of: a first side chain that includes a cyclic carbonate moiety; a first side chain that includes a poly(alkylene oxide) moiety; and a first cross link links the disiloxane to a second siloxane and that includes a poly(alkylene oxide) moiety. In some instance, the second silicon is linked to a second substituent selected from a group consisting of: a second side chain that includes a cyclic carbonate moiety, and a second side chain that includes a poly(alkylene oxide) moiety.