Abstract:
In a permanently engaged starter system (20), a one-way clutch (40) is located between a starter motor (21) and a starter gear (54) for initiating the start of an internal combustion engine. The clutch (40) can include a starter gear (54), an outer race (56), an inner race (60), a roller cage (42) supporting a plurality of roller disks (46), and at least one spring (52). The roller cage (42) can include an enlarged inertia ring supported adjacent to a radially outwardly located peripheral edge (50) for retarding rotational movement of the roller cage (42) relative to the inner race (60) in response to acceleration of the starter motor (21). The spring (52) biases the roller cage (42) relative to the inner race (60) toward a disengaged clutch position, such that the plurality of roller disks (46) engage the inner race (60) and are spaced from the outer race surface (56).
Abstract:
The present invention is directed toward a shift actuator assembly that includes a housing having a retaining mechanism. A holding pawl is biased into engagement with the retaining mechanism. A solenoid releasably engages the pawl when the shift shaft is disposed in its first position such that once the solenoid disengages the pawl, the cam surfaces on the retaining mechanism cooperate with the holding surfaces on the pawl to drive the pawl out of engagement with the retaining mechanism thereby releasing the biasing force of the biasing mechanism to drive the housing and the shift fork axially on the shift shaft between engaged and disengaged positions with respect to the associated gear set.
Abstract:
A cam phaser (10) dynamically adjusts a rotational relationship of a camshaft (24) of an internal combustion engine with respect to an engine crankshaft (34). A cam sprocket (20) can be driven by an endless loop power transmission member connected to a drive sprocket (36) mounted for rotation with the engine 5 crankshaft (34). The cam phaser (10) can include a planetary gear drive train (12) having a centrally located sun gear (14) connected for rotation with the cam sprocket (20), a ring gear (18) connected for rotation with the camshaft (24), and a plurality of planet gears (16a, 16b) supported by a carrier (22) in meshing engagement between the sun gear (14) and the ring gear (18). A phase adjustment gear (26) can be 10 connected for rotation with the carrier (22). The sun gear (14) can drive the planet gears (16a, 16b) in rotation thereby causing the ring gear (18) to be driven in rotation. Rotational movement the phase adjustment gear (26) can adjustably vary a cam phase position of the camshaft (24) relative to the crankshaft (34).
Abstract:
A cam phaser (10) for dynamically adjusting a rotational relationship of a camshaft (24) of an internal combustion engine with respect to an engine crank shaft can include a planetary gear system (12) having a split ring gear (18) including a drive-side ring gear (18a) to be driven by the engine crank shaft through an endless loop power transmission member and an output-side ring gear (18b) connectable for rotation with the camshaft (24). A sun gear (14) can be located concentric with the split ring gear (18), and a number of planetary gears (16a,16b, 16c) can be in meshing engagement between the sun gear (14) and the split ring gear (18). The output-side ring gear (18b) can have a different number of teeth (greater or lesser) than compared with the drive-side ring gear (18a) by a value corresponding to a multiple of the number of planetary gears to provide tooth alignment at an engagement position of each of the planetary gears (16a, 16b, 16c).