Abstract:
Several embodiments of the present invention are generally directed to medical visualization systems that comprise combinations of disposable and reusable components, such as catheters, functional handles, hubs, optical devices, etc. Other embodiments of the present invention are generally directed to features and aspects of an in-vivo visualization system that comprises an endoscope having a working channel through which a catheter having viewing capabilities is routed. the catheter may obtain viewing capabilities by being constructed as a vision catheter or by having a fiberscope or other viewing device selectively routed through one of its channels. The catheter is preferably of the steerable type so that the distal end of the catheter may be steered from its proximal end as it is advanced with the body. A suitable use for the in-vivo visualization system includes but is not limited to diagnosis and/or treatment of the duodenum, and particularly the biliary tree.
Abstract:
An apparatus according to one embodiment includes an endoscope tip including a housing that is monolithically formed of a transparent material. At least one optical component is at least partially encased within the housing. The optical component can be, for example, a light source, a fiber optic, an imaging sensor, a lens, a reflector or a light shield. In another embodiment, an apparatus includes an endoscope having a distal end portion that includes a housing. The housing is monolithically formed with a transparent material and a light source is at least partially encased within the housing. The housing also includes a micro-defects portion within the transparent material of the housing. The micro-defects portion is configured to provide a selected output shape of a beam of light produced by the light source.
Abstract:
Several embodiments of the present invention are generally directed to medical visualization systems that comprise combinations of disposable and reusable components, such as catheters, functional handles, hubs, optical devices, etc. Other embodiments of the present invention are generally directed to features and aspects of an in-vivo visualization system that comprises an endoscope having a working channel through which a catheter having viewing capabilities is routed. the catheter may obtain viewing capabilities by being constructed as a vision catheter or by having a fiberscope or other viewing device selectively routed through one of its channels. The catheter is preferably of the steerable type so that the distal end of the catheter may be steered from its proximal end as it is advanced with the body. A suitable use for the in-vivo visualization system includes but is not limited to diagnosis and/or treatment of the duodenum, and particularly the biliary tree.
Abstract:
A steering mechanism is used as part of a medical device such as a catheter or an endoscope to allow movement of a steerable distal portion of the catheter or endoscope. The mechanism can include a elongate housing and an actuation system. The elongate housing is adapted to be coupled to the steerable portion of the medical device. The actuation system includes an actuator, a first cam, and a second cam. The actuator can move the first cam between a first position and a second position as the actuator is moved along a first axis (or about a second axis different than the first axis). Movement of the first cam between its first and second positions moves the steerable portion of the medical device along a first plane. The actuator can move the second cam between a first position and a second position as the actuator is moved along the second axis (or about the first axis). Movement of the second cam between its first and second positions moves the steerable portion of the medical device along a second plane different than the first plane.
Abstract:
Embodiments of the invention include an apparatus including at least one illumination source configured to emit illumination energy and an illumination control system to receive the illumination energy. The illumination control system is configured to control the illumination energy to output a sequence of different illumination wavelengths using the illumination energy. The apparatus also includes a plurality of optical fibers connected to the illumination control system and configured to sequentially output the different illumination wavelengths. Each optical fiber is configured to transmit a different illumination wavelength of the sequence to output the sequence of different illumination wavelengths from the optical fibers toward an object. The apparatus further includes an image capture device including a plurality of pixels, and each pixel of the image capture device is configured to detect the illumination energy associated with each of the plurality of different illumination wavelengths reflected from the object.
Abstract:
Several embodiments of the present invention are generally directed to medical visualization systems that comprise combinations of disposable and resuable components, such as catheters, functional handles, hubs, optical devices, etc. Other embodiments of the present invention are generally directed to features and aspects of an in-vivo visualization system that comprises an endoscope having a working channel through which a catheter having viewing capabilities is routed. the catheter may obtain viewing capabilities by being constructed as a vision catheter or by having a fiberscope or other viewing device selectively routed through one of its channels. The catheter is preferably of the steerable type so that the distal end of the catheter may be steered from its proximal end as it is advanced with the body. A suitable use for the in-vivo visualization system includes but is not limited to diagnosis and/or treatment of the duodenum, and particularly the biliary tree.
Abstract:
Embodiments of the invention include an apparatus including at least one illumination source configured to emit illumination energy and an illumination control system to receive the illumination energy. The illumination control system is configured to control the illumination energy to output a sequence of different illumination wavelengths using the illumination energy. The apparatus also includes a plurality of optical fibers connected to the illumination control system and configured to sequentially output the different illumination wavelengths. Each optical fiber is configured to transmit a different illumination wavelength of the sequence to output the sequence of different illumination wavelengths from the optical fibers toward an object. The apparatus further includes an image capture device including a plurality of pixels, and each pixel of the image capture device is configured to detect the illumination energy associated with each of the plurality of different illumination wavelengths reflected from the object.
Abstract:
Embodiments of the invention include an apparatus including at least one illumination source configured to emit illumination energy and an illumination control system to receive the illumination energy. The illumination control system is configured to control the illumination energy to output a sequence of different illumination wavelengths using the illumination energy. The apparatus also includes a plurality of optical fibers connected to the illumination control system and configured to sequentially output the different illumination wavelengths. Each optical fiber is configured to transmit a different illumination wavelength of the sequence to output the sequence of different illumination wavelengths from the optical fibers toward an object. The apparatus further includes an image capture device including a plurality of pixels, and each pixel of the image capture device is configured to detect the illumination energy associated with each of the plurality of different illumination wavelengths reflected from the object.
Abstract:
An apparatus includes an optical fiber extending from a proximal end to a distal end. The optical fiber may include a cladding layer circumferentially disposed about a core layer and a substantially spherically shaped portion at the distal end. The apparatus may also include a first coating circumferentially disposed on a first length of the cladding layer, and a second coating circumferentially disposed on a second length of the cladding layer. The second length may extend distally from a region proximate the distal end of the first coating.
Abstract:
An apparatus according to one embodiment includes an endoscope tip including a housing that is monolithically formed of a transparent material. At least one optical component is at least partially encased within the housing. The optical component can be, for example, a light source, a fiber optic, an imaging sensor, a lens, a reflector or a light shield. In another embodiment, an apparatus includes an endoscope having a distal end portion that includes a housing. The housing is monolithically formed with a transparent material and a light source is at least partially encased within the housing. The housing also includes a micro-defects portion within the transparent material of the housing. The micro-defects portion is configured to provide a selected output shape of a beam of light produced by the light source.