摘要:
A micro-controller unit (MCU) includes an analog-to-digital converter (ADC) including an input, a timing input, and an output. The input of the ADC is configurable to couple to an output of a peripheral module. The MCU further includes a synchronous sampling controller configured to provide a clock signal to a clock output terminal configurable to couple to a clock input of the peripheral module. The synchronous sampling controller is further configured to provide a timing signal to the timing input of the ADC to synchronize sampling of a signal at the input of the ADC to timing of the peripheral module.
摘要:
A micro-controller unit (MCU) includes an analog-to-digital converter (ADC) including an input, a timing input, and an output. The input of the ADC is configurable to couple to an output of a peripheral module. The MCU further includes a synchronous sampling controller configured to provide a clock signal to a clock output terminal configurable to couple to a clock input of the peripheral module. The synchronous sampling controller is further configured to provide a timing signal to the timing input of the ADC to synchronize sampling of a signal at the input of the ADC to timing of the peripheral module.
摘要:
An integrated circuit includes a shared synchronization bus having a plurality of channels assigned to one or more of a plurality of peripheral modules. The integrated circuit further includes a first peripheral module of the plurality of peripheral modules including a control output coupled to the shared synchronization bus and configured to communicate event timing data to an input of a second peripheral module of the plurality of peripheral modules through a selected one of the plurality of channels.
摘要:
An integrated circuit includes a shared synchronization bus having a plurality of channels assigned to one or more of a plurality of peripheral modules. The integrated circuit further includes a first peripheral module of the plurality of peripheral modules including a control output coupled to the shared synchronization bus and configured to communicate event timing data to an input of a second peripheral module of the plurality of peripheral modules through a selected one of the plurality of channels.
摘要:
In an embodiment, an electrical over-stress (EOS) circuit includes a detection circuit coupled between first and second supply terminals and configured to detect a perturbation in a supply voltage potential between the first and second supply terminals or between a supply voltage potential and a pad voltage of a bond pad. The EOS circuit further includes an alert generation circuit configured to store data indicating an EOS event in response to detecting the perturbation.
摘要:
In an embodiment, an electrical over-stress (EOS) circuit includes a detection circuit coupled between first and second supply terminals and configured to detect a perturbation in a supply voltage potential between the first and second supply terminals or between a supply voltage potential and a pad voltage of a bond pad. The EOS circuit further includes an alert generation circuit configured to store data indicating an EOS event in response to detecting the perturbation.
摘要:
A mixed signal processing system (22) includes digital (28) and analog (29) systems and is powered by a variable external voltage, such as a battery voltage. A voltage regulator (41) regulates the battery voltage to a nominal potential less than the battery voltage. The voltage regulator (41) provides the regulated voltage to a digital subsystem (51) of the digital system (28). A regulated charge pump (43) provides a voltage which is above the battery voltage and substantially constant due to regulation. The regulated charge pump (43) provides the regulated charge-pumped voltage to an analog subsystem (61) of the analog system (29) for better analog operation. A level shifter (44) equalizes signal levels between the digital (28) and analog (29) systems.
摘要:
A single-ended to differential converter (400, 500) has an input terminal (418, 518) which is adapted to be coupled to an inductance (412, 512). A first transistor (402, 502) which terminates an input signal received at the input terminal according to its transconductance has a first current electrode coupled to the input terminal. A second current electrode of the first transistor (402, 502) outputs one current of a differential output current. A second transistor (404, 504) has a control electrode coupled to the input terminal, a first current electrode coupled to a signal ground terminal, and a second current electrode for providing another current of the differential output current. Bias circuits bias the control electrodes of the first (402, 502) and second (404, 504) transistors to maintain the same DC currents through their current electrodes. The single-ended to differential converter (400, 500) reflects the noise produced by the first transistor (402, 502) in the second transistor (404, 504), and this common-mode noise can be rejected in a subsequent stage.