摘要:
A method and apparatus for electrically coupling a plurality of target together is disclosed. Individually powered targets allow greater control over depositing during a sputtering process. By individually powering the targets, different power levels may be applied to different targets. The targets may additionally be coupled together with a resistor. The resistor allows the targets to have a more controlled power level.
摘要:
The present invention generally comprises a top shield for shielding a shadow frame within a PVD chamber. The top shield may remain in a stationary position and at least partially shield the shadow frame to reduce the amount of material that may deposit on the shadow frame during processing. The top shield may be cooled to reduce the amount of fluxuation in temperature of the top shield and shadow frame during processing and/or during down time.
摘要:
The present invention generally comprises a top shield for shielding a shadow frame within a PVD chamber. The top shield may remain in a stationary position and at least partially shield the shadow frame to reduce the amount of material that may deposit on the shadow frame during processing. The top shield may be cooled to reduce the amount of fluxuation in temperature of the top shield and shadow frame during processing and/or during down time.
摘要:
A physical vapor deposition target assembly is configured to isolate a target-bonding layer from a processing region. In one embodiment, the target assembly comprises a backing plate, a target having a first surface and a second surface, and a bonding layer disposed between the backing plate and the second surface. The first surface of the target is in fluid contact with a processing region and the second surface of the target is oriented toward the backing plate. The target assembly may include multiple targets.
摘要:
The present invention generally comprises a top shield for shielding a shadow frame within a PVD chamber. The top shield may remain in a stationary position and at least partially shield the shadow frame to reduce the amount of material that may deposit on the shadow frame during processing. The top shield may be cooled to reduce the amount of fluxuation in temperature of the top shield and shadow frame during processing and/or during down time.
摘要:
A physical vapor deposition target assembly is configured to isolate a target-bonding layer from a processing region. In one embodiment, the target assembly comprises a backing plate, a target having a first surface and a second surface, and a bonding layer disposed between the backing plate and the second surface. The first surface of the target is in fluid contact with a processing region and the second surface of the target is oriented toward the backing plate. The target assembly may include multiple targets.
摘要:
In certain embodiments, the invention comprises a backing plate for accommodating large area sputtering targets is disclosed. The backing plate assembly has cavities carved into the back surface of the backing plate. The backing plate may further include cooling channels that run through the backing plate to control the temperature of the backing plate and the target. The cavities may be filled with a material that has a lower density than the backing plate. Additionally, the entire back surface may be covered with the material to produce a smooth surface upon which a magnetron may move during a PVD process.
摘要:
A magnetron assembly including one or more magnetrons each forming a closed plasma loop on the sputtering face of the target. The target may include multiple strip targets on which respective strip magnetrons roll and are partially supported on a common support plate through a spring mechanism. The strip magnetron may be a two-level folded magnetron in which each magnetron forms a folded plasma loop extending between lateral sides of the strip target and its ends meet in the middle of the target. The magnets forming the magnetron may be arranged in a pattern having generally uniform straight portions joined by curved portion in which extra magnet positions are available near the corners to steer the plasma track. Multiple magnetrons, possibly flexible, may be resiliently supported on a scanned support plate and individually partially supported by rollers on the back of one or more targets.
摘要:
The present invention discloses a physical vapor deposition apparatus and a method for sputtering. When sputtering from a plurality of sputtering targets, a plurality of magnetrons may be used. The number of magnetrons may correspond to the number of targets. Each magnetron may be different to control the amount of material deposited from each sputtering target and the specific location on the sputtering target that is sputtered. The magnetrons may be spaced a different distance from the backing plate and hence, the target. The magnetrons may be of different sizes. The magnetrons may have a different magnetic path. The magnetrons may have a different pitch. The magnetrons may have a different magnitude. By tailoring the distance, size, path, pitch, and magnitude, uniform sputtering and target erosion may be achieved.
摘要:
A physical vapor deposition (PVD) apparatus and a PVD method are disclosed. Extending an anode across the processing space between the target and the substrate may increase deposition uniformity on a substrate. The anode provides a path to ground for electrons that are excited in the plasma and may uniformly distribute the electrons within the plasma across the processing space rather than collect at the chamber walls. The uniform distribution of the electrons within the plasma may create a uniform deposition of material on the substrate. The anodes may be cooled with a cooling fluid to control the temperature of the anodes and reduce flaking. The anodes may be disposed across the process space perpendicular to the long side of a magnetron that may scan in two dimensions across the back of the sputtering target. The scanning magnetron may reduce localized heating of the anode.