摘要:
Disclosed are embodiments of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (Rs) and gate to drain capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay). Specifically, different heights of the source and drain regions and/or different distances between the source and drain regions and the gate are tailored to minimize series resistance in the source region (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate to drain capacitance (i.e., in order to simultaneously ensure that gate to drain capacitance is less than a predetermined capacitance value).
摘要:
A design structure including a transistor having a directly contacting gate and body is disclosed. In one embodiment, the transistor includes a gate; a body; and a dielectric layer extending over the body to insulate the gate from the body along an entire surface of the body except along a portion of at least a sidewall of the body, wherein the gate is in direct contact with the body at the portion.
摘要:
Pixel sensor cells, methods of fabricating pixel sensor cells, and design structures for a pixel sensor cell. The pixel sensor cell has a gate structure that includes a gate dielectric and a gate electrode on the gate dielectric. The gate electrode includes a layer with first and second sections that have a juxtaposed relationship on the gate dielectric. The second section of the gate electrode is comprised of a conductor, such as doped polysilicon or a metal. The first section of the gate electrode is comprised of a metal having a higher work function than the conductor comprising the second section so that the gate structure has an asymmetric threshold voltage.
摘要:
Disclosed are embodiments for a design structure of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (Rs) and gate to drain capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay). Specifically, different heights of the source and drain regions and/or different distances between the source and drain regions and the gate are tailored to minimize series resistance in the source region (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate to drain capacitance (i.e., in order to simultaneously ensure that gate to drain capacitance is less than a predetermined capacitance value).
摘要:
Pixel sensor cells, methods of fabricating pixel sensor cells, and design structures for a pixel sensor cell. The pixel sensor cell has a gate structure that includes a gate dielectric and a gate electrode on the gate dielectric. The gate electrode includes a layer with first and second sections that have a juxtaposed relationship on the gate dielectric. The second section of the gate electrode is comprised of a conductor, such as doped polysilicon or a metal. The first section of the gate electrode is comprised of a metal having a higher work function than the conductor comprising the second section so that the gate structure has an asymmetric threshold voltage.
摘要:
Semiconductor structures with damascene metal gates and pixel sensor cell shields, methods of manufacture and design structures are provided. The method includes forming a dielectric layer over a dummy gate structure. The method further includes forming one or more recesses in the dielectric layer. The method further includes removing the dummy gate structure in the dielectric layer to form a trench. The method further includes forming metal in the trench and the one more recesses in the dielectric layer to form a damascene metal gate structure in the trench and one or more metal components in the one or more recesses.
摘要:
Disclosed are embodiments of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (Rs) and gate to drain capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay). Specifically, different heights of the source and drain regions and/or different distances between the source and drain regions and the gate are tailored to minimize series resistance in the source region (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate to drain capacitance (i.e., in order to simultaneously ensure that gate to drain capacitance is less than a predetermined capacitance value).
摘要:
Disclosed are embodiments of a field effect transistor (FET) and, more particularly, a fully-depleted, thin-body (FDTB) FET that allows for scaling with minimal short channel effects, such as drain induced barrier lowering (DIBL) and saturation threshold voltage (Vtsat) roll-off, at shorter channel lengths. The FDTB FET embodiments are configured with either an edge back-gate or split back-gate that can be biased in order to selectively adjust the potential barrier between the source/drain regions and the channel region for minimizing off-state leakage current between the drain region and the source region and/or for varying threshold voltage. These unique back-gate structures avoid the need for halo doping to ensure linear threshold voltage (Vtlin) roll-up at smaller channel lengths and, thus, avoid across-chip threshold voltage variations due to random doping fluctuations. Also disclosed are method embodiments for forming such FETs.
摘要:
Complementary metal gate dense interconnects and methods of manufacturing the interconnects is provided. The method comprises forming a first metal gate on a wafer and second metal gate on the wafer. A conductive interconnect material is deposited in a space formed between the first metal gate and the second metal gate to provide an electrical connection between the first metal gate and the second metal gate.
摘要:
Solutions for forming stress optimizing contact bars and contacts are disclosed. In one aspect, a semiconductor device is disclosed including an n-type field effect transistor (NFET) having source/drain regions; a p-type field effect transistor (PFET) having source/drain regions; a stress inducing layer over both the NFET and the PFET, the stress inducing layer inducing only one of a compressive stress and a tensile stress; a contact bar extending through the stress inducing layer and coupled to at least one of the source/drain regions of a selected device of the PFET and the NFET to modify a stress induced in the selected device compared to a stress induced in the other device; and a round contact extending through the stress inducing layer and coupled to at least one of the source/drain regions of the other device of the PFET and the NFET.