摘要:
In one or more embodiments, a processor includes a link return stack circuit used for storing branch return addresses, wherein a link return stack controller is configured to determine that one or more entries in the link return stack are invalid as being dependent on a mispredicted branch, and to reset the link return stack to a valid remaining entry, if any. In this manner, branch mispredictions cause dependent entries in the link return stack to be flushed from the link return stack, or otherwise invalidated, while preserving the remaining valid entries, if any, in the link return stack. In at least one embodiment, a branch information queue used for tracking predicted branches is configured to store a marker indicating whether a predicted branch has an associated entry in the link return stack, and it may store an index value identifying the specific, corresponding entry in the link return stack.
摘要:
A microprocessor includes two branch history tables, and is configured to use a first one of the branch history tables for predicting branch instructions that are hits in a branch target cache, and to use a second one of the branch history tables for predicting branch instructions that are misses in the branch target cache. As such, the first branch history table is configured to have an access speed matched to that of the branch target cache, so that its prediction information is timely available relative to branch target cache hit detection, which may happen early in the microprocessor's instruction pipeline. The second branch history table thus need only be as fast as is required for providing timely prediction information in association with recognizing branch target cache misses as branch instructions, such as at the instruction decode stage(s) of the instruction pipeline.
摘要:
A processor capable of fetching and executing variable length instructions is described having instructions of at least two lengths. The processor operates in multiple modes. One of the modes restricts instructions that can be fetched and executed to the longer length instructions. An instruction cache is used for storing variable length instructions and their associated predecode bit fields in an instruction cache line and storing the instruction address and processor operating mode state information at the time of the fetch in a tag line. The processor operating mode state information indicates the program specified mode of operation of the processor. The processor fetches instructions from the instruction cache for execution. As a result of an instruction fetch operation, the instruction cache may selectively enable the writing of predecode bit fields in the instruction cache and may selectively enable the reading of predecode bit fields stored in the instruction cache based on the processor state at the time of the fetch.
摘要:
A method of managing cache partitions provides a first pointer for higher priority writes and a second pointer for lower priority writes, and uses the first pointer to delimit the lower priority writes. For example, locked writes have greater priority than unlocked writes, and a first pointer may be used for locked writes, and a second pointer may be used for unlocked writes. The first pointer is advanced responsive to making locked writes, and its advancement thus defines a locked region and an unlocked region. The second pointer is advanced responsive to making unlocked writes. The second pointer also is advanced (or retreated) as needed to prevent it from pointing to locations already traversed by the first pointer. Thus, the pointer delimits the unlocked region and allows the locked region to grow at the expense of the unlocked region.
摘要:
A pipelined processor comprises an instruction cache (iCache), a branch target address cache (BTAC), and processing stages, including a stage to fetch from the iCache and the BTAC. To compensate for the number of cycles needed to fetch a branch target address from the BTAC, the fetch from the BTAC leads the fetch of a branch instruction from the iCache by an amount related to the cycles needed to fetch from the BTAC. Disclosed examples either decrement a write address of the BTAC or increment a fetch address of the BTAC, by an amount essentially corresponding to one less than the cycles needed for a BTAC fetch.
摘要:
A processing system may include a memory configured to store data in a plurality of pages, a TLB, and a memory cache including a plurality of cache lines. Each page in the memory may include a plurality of lines of memory. The memory cache may permit, when a virtual address is presented to the cache, a matching cache line to be identified from the plurality of cache lines, the matching cache line having a matching address that matches the virtual address. The memory cache may be configured to permit one or more page attributes of a page located at the matching address to be retrieved from the memory cache and not from the TLB, by further storing in each one of the cache lines a page attribute of the line of data stored in the cache line.
摘要:
In a pipelined processor where instructions are pre-decoded prior to being stored in a cache, an incorrectly pre-decoded instruction is detected during execution in the pipeline. The corresponding instruction is invalidated in the cache, and the instruction is forced to evaluate as a branch instruction. In particular, the branch instruction is evaluated as “mispredicted not taken” with a branch target address of the incorrectly pre-decoded instruction's address. This, with the invalidated cache line, causes the incorrectly pre-decoded instruction to be re-fetched from memory with a precise address. The re-fetched instruction is then correctly pre-decoded, written to the cache, and executed.
摘要:
In a pipelined processor, a pre-decoder in advance of an instruction cache calculates the branch target address (BTA) of PC-relative and absolute address branch instructions. The pre-decoder compares the BTA with the branch instruction address (BIA) to determine whether the target and instruction are in the same memory page. A branch target same page (BTSP) bit indicating this is written to the cache and associated with the instruction. When the branch is executed and evaluated as taken, a TLB access to check permission attributes for the BTA is suppressed if the BTA is in the same page as the BIA, as indicated by the BTSP bit. This reduces power consumption as the TLB access is suppressed and the BTA/BIA comparison is only performed once, when the branch instruction is first fetched. Additionally, the pre-decoder removes the BTA/BIA comparison from the BTA generation and selection critical path.
摘要:
A link stack in a processor is repaired in response to a procedure return address misprediction error. In one example, a link stack for use in a processor is repaired by detecting an error in a procedure return address value retrieved from the link stack and skipping a procedure return address value currently queued for retrieval from the link stack responsive to detecting the error. In one or more embodiments, a link stack circuit comprises a link stack and a link stack pointer. The link stack is configured to store a plurality of procedure return address values. The link stack pointer is configured to skip a procedure return address value currently queued for retrieval from the link stack responsive to an error detected in a procedure return address value previously retrieved from the link stack.
摘要:
A fetch section of a processor comprises an instruction cache and a pipeline of several stages for obtaining instructions. Instructions may cross cache line boundaries. The pipeline stages process two addresses to recover a complete boundary crossing instruction. During such processing, if the second piece of the instruction is not in the cache, the fetch with regard to the first line is invalidated and recycled. On this first pass, processing of the address for the second part of the instruction is treated as a pre-fetch request to load instruction data to the cache from higher level memory, without passing any of that data to the later stages of the processor. When the first line address passes through the fetch stages again, the second line address follows in the normal order, and both pieces of the instruction are can be fetched from the cache and combined in the normal manner.