摘要:
A method and system for flexible FM tuning are provided and may include tuning to a particular frequency within a range of FM channels based on an IF frequency that includes an integer multiple of the channel spacing between neighboring allocated FM channels within the range of FM channels, offset by at most one-half the channel spacing. The method may further include determining whether the particular frequency comprises an on frequency channel, utilizing a frequency error that is based on the IF frequency. A local oscillator frequency may be selected for the tuning based on the frequency offset. An intermediate frequency (IF) channel may be generated utilizing the particular frequency and the selected local oscillator frequency. The generated IF channel may be between neighboring channels selected from the range of FM channels. The frequency error may be determined for the particular frequency within the range of FM channels.
摘要:
A system for processing signals is disclosed and may include a single chip having an integrated Bluetooth radio and an integrated FM radio. The single chip may include at least one processor that enables selecting from a range of FM channels, a particular frequency for one of the FM channels based on an intermediate frequency (IF). The particular frequency may be selected so that it is an integer multiple of a channel spacing between neighboring allocated FM channels within the range of FM channels, and may be offset by at most one-half the channel spacing. The at least one processor may enable determining a frequency error of the selected particular frequency for the one of the FM channels. The at least one processor may also enable determining, whether the particular frequency includes an on-frequency channel based on the determined frequency error.
摘要:
A method and system for flexible FM tuning are provided and may include tuning to a particular frequency within a range of FM channels based on an IF frequency that includes an integer multiple of the channel spacing between neighboring allocated FM channels within the range of FM channels, offset by at most one-half the channel spacing. The method may further include determining whether the particular frequency comprises an on frequency channel, utilizing a frequency error that is based on the IF frequency. A local oscillator frequency may be selected for the tuning based on the frequency offset. An intermediate frequency (IF) channel may be generated utilizing the particular frequency and the selected local oscillator frequency. The generated IF channel may be between neighboring channels selected from the range of FM channels. The frequency error may be determined for the particular frequency within the range of FM channels.
摘要:
A system for processing signals is disclosed and may include a single chip having an integrated Bluetooth radio and an integrated FM radio. The single chip may include at least one processor that enables selecting from a range of FM channels, a particular frequency for one of the FM channels based on an intermediate frequency (IF). The particular frequency may be selected so that it is an integer multiple of a channel spacing between neighboring allocated FM channels within the range of FM channels, and may be offset by at most one-half the channel spacing. The at least one processor may enable determining a frequency error of the selected particular frequency for the one of the FM channels. The at least one processor may also enable determining, whether the particular frequency includes an on-frequency channel based on the determined frequency error.
摘要:
Methods and systems for optimal frequency planning for an integrated communication system with multiple receivers may include adjusting a center frequency of a low IF signal to reduce interference by a second order interference signal. The center frequency may be adjusted to avoid high power portions of the second order interference signal. The interference level corresponding to a center frequency may be determined by, for example, a SNR of the low IF signal, or by determining a BER for the low IF signal. The center frequency of the low IF signal may be dynamically adjusted to keep second order interference level at an acceptable level. Adjusting the center frequency of the low IF signal may also comprise keeping the low IF signal from being blocked by a DC component of the second order interference signal.
摘要:
A method and system sharing a Bluetooth processor for FM functions are provided. The single chip may comprise an integrated Bluetooth radio, an integrated FM radio, and processor system. A processor in the processor system may be utilized for Bluetooth and FM data processing and may time multiplex between the Bluetooth and FM data processing based on interrupt signals. The processor may operate in a low power mode based on a clock signal generated from a low power oscillator. When a Bluetooth interrupt signal is received, the processor may enable Bluetooth data processing that may be based on a Bluetooth clock signal. When an FM interrupt signal is received, the processor may enable FM data processing that may be based on an FM clock signal. When data processing is complete, the processor may return to the low power mode operation.
摘要:
A method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor are provided. The single chip may comprise a Bluetooth radio, an FM radio, a processor system, and a peripheral transport unit (PTU). FM data may be received and/or transmitted via the FM radio and Bluetooth data may be received and/or transmitted via the Bluetooth radio. The FM radio may receive radio data system (RDS) data. The PTU may support digital and analog interfaces. A processor in the processor system may time-multiplex processing of FM data and processing of Bluetooth data. The single chip may operate in an FM-only, a Bluetooth-only, and an FM-Bluetooth mode. The single chip may reduce power consumption by disabling portions of the Bluetooth radio during FM-only mode and/or disabling analog circuitry when performing digital processing. Communication between Bluetooth and FM channels may be enabled via the single chip.
摘要:
A method and system sharing a Bluetooth processor for FM functions are provided. The single chip may comprise an integrated Bluetooth radio, an integrated FM radio, and processor system. A processor in the processor system may be utilized for Bluetooth and FM data processing and may time multiplex between the Bluetooth and FM data processing based on interrupt signals. The processor may operate in a low power mode based on a clock signal generated from a low power oscillator. When a Bluetooth interrupt signal is received, the processor may enable Bluetooth data processing that may be based on a Bluetooth clock signal. When an FM interrupt signal is received, the processor may enable FM data processing that may be based on an FM clock signal. When data processing is complete, the processor may return to the low power mode operation.
摘要:
A method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor are provided. The single chip may comprise a Bluetooth radio, an FM radio, a processor system, and a peripheral transport unit (PTU). FM data may be received and/or transmitted via the FM radio and Bluetooth data may be received and/or transmitted via the Bluetooth radio. The FM radio may receive radio data system (RDS) data. The PTU may support digital and analog interfaces. A processor in the processor system may time-multiplex processing of FM data and processing of Bluetooth data. The single chip may operate in an FM-only, a Bluetooth-only, and an FM-Bluetooth mode. The single chip may reduce power consumption by disabling portions of the Bluetooth radio during FM-only mode and/or disabling analog circuitry when performing digital processing. Communication between Bluetooth and FM channels may be enabled via the single chip.
摘要:
Aspects of a method and system for FM communication are provided. An FM transceiver may generate FM radio frequency signals for transmission by modulating a single PLL within the FM transceiver via at least one modulation point with a frequency modulated multiplexed audio signal. The single PLL may also generate signals for downconversion of FM radio signals received by the transceiver. The single PLL may be modulated via a first modulation point in a feedback loop in the single PLL. In some instances, a reference frequency path within the single PLL may be selected to achieve the appropriate loop bandwidth for generating the FM radio signal for transmission. A second modulation point may be achieved by adding the modulated multiplexed audio signal to an input of a VCO within the single PLL. Moreover, the single PLL may be modulated via the first and second modulation points concurrently.