Abstract:
Highly power efficient transmitter output stage designs are provided. In an embodiment, the probability density function (PDF) of an input signal is divided into a plurality of regions, and samples of the input signal are processed depending on the region of the PDF within which they fail. The PDF can be divided between an inner region corresponding to samples of the input signal that are within a predetermined amplitude range, and outer regions corresponding to samples of the input signal that are outside of the predetermined amplitude range. Samples of the input signal that fall in the inner region are processed by a class A biased amplifier and samples of the input signal that fall in the outer regions are processed by a class B biased amplifier. Output stage designs according to embodiments can be implemented as power amplifiers or power digital-to-analog converters (DACs).
Abstract:
A communication device (e.g., a cable modem (CM)) includes a digital to analog converter (DAC) and a power amplifier (PA) that generate a signal to be transmitting via a communication interface to another communication device (e.g., cable modem termination system (CMTS)). The CM includes diagnostic analyzer that samples the signal based on a fullband sample capture corresponding to a full bandwidth and/or a subset (e.g., narrowband) sample capture to generate a fullband and/or subset signal capture (e.g., of an upstream (US) communication channel between the CM and the CMTS). The diagnostic analyzer can be configured to generate sample captures of the signal based on any desired parameter(s), condition(s), and/or trigger(s). The CM then transmits the signal to the CMTS and the fullband and/or subset signal capture to the CMTS and/or a proactive network maintenance (PNM) communication device to determine at least one characteristic associated with performance of the US communication channel.
Abstract:
A communication device includes a communication interface, a number of variable power amplifiers (VPAs), and a processor. Some of the VPAs are configured to process analog signals to generate processed analog signals (e.g., each VPA configured to process one of the analog signals to generate one of the processed analog signals based on a respective VPA control signal). A composite VPA processes a summation of the processed analog signals, which are generated by certain of the VPA, to generate a processed composite signal based on a composite VPA control signal. The processor generates the a first, a second, and a composite VPA control signals based, at least in part, on configuration information from another communication device via the communication interface. The processor may be configured to consider other information as well, such as locally generated information (within the communication device), operational history, current operating conditions, etc.
Abstract:
A communication device includes a communication interface, a number of variable power amplifiers (VPAs), and a processor. Some of the VPAs are configured to process analog signals to generate processed analog signals (e.g., each VPA configured to process one of the analog signals to generate one of the processed analog signals based on a respective VPA control signal). A composite VPA processes a summation of the processed analog signals, which are generated by certain of the VPA, to generate a processed composite signal based on a composite VPA control signal. The processor generates the a first, a second, and a composite VPA control signals based, at least in part, on configuration information from another communication device via the communication interface. The processor may be configured to consider other information as well, such as locally generated information (within the communication device), operational history, current operating conditions, etc.
Abstract:
Highly power efficient transmitter output stage designs are provided. In an embodiment, the probability density function (PDF) of an input signal is divided into a plurality of regions, and samples of the input signal are processed depending on the region of the PDF within which they fall. The PDF can be divided between an inner region corresponding to samples of the input signal that are within a predetermined amplitude range, and outer regions corresponding to samples of the input signal that are outside of the predetermined amplitude range. Samples of the input signal that fall in the inner region are processed by a class A biased amplifier and samples of the input signal that fall in the outer regions are processed by a class B biased amplifier. Output stage designs according to embodiments can be implemented as power amplifiers or power digital-to-analog converters (DACs).
Abstract:
A communication device (e.g., a cable modem (CM)) includes a digital to analog converter (DAC) and a power amplifier (PA) that generate a signal to be transmitting via a communication interface to another communication device (e.g., cable modem termination system (CMTS)). The CM includes diagnostic analyzer that samples the signal based on a fullband sample capture corresponding to a full bandwidth and/or a subset (e.g., narrowband) sample capture to generate a fullband and/or subset signal capture (e.g., of an upstream (US) communication channel between the CM and the CMTS). The diagnostic analyzer can be configured to generate sample captures of the signal based on any desired parameter(s), condition(s), and/or trigger(s). The CM then transmits the signal to the CMTS and the fullband and/or subset signal capture to the CMTS and/or a proactive network maintenance (PNM) communication device to determine at least one characteristic associated with performance of the US communication channel.
Abstract:
A communication device includes a communication interface, a number of variable power amplifiers (VPAs), and a processor. Some of the VPAs are configured to process analog signals to generate processed analog signals (e.g., each VPA configured to process one of the analog signals to generate one of the processed analog signals based on a respective VPA control signal). A composite VPA processes a summation of the processed analog signals, which are generated by certain of the VPA, to generate a processed composite signal based on a composite VPA control signal. The processor generates the a first, a second, and a composite VPA control signals based, at least in part, on configuration information from another communication device via the communication interface. The processor may be configured to consider other information as well, such as locally generated information (within the communication device), operational history, current operating conditions, etc.