Abstract:
Methods, systems, and apparatuses, including electrical circuits, are described for spread spectrum ADC noise reduction. An analog-to-digital converter may include an analog modulator to modulate an input analog signal according to a pseudo-noise sequence. An ADC core may convert the modulated analog input signal to a digital signal representation thereof. The digital signal may be demodulated using the pseudo-noise sequence to generate a noise-spread signal with reduced noise spectral density. The analog modulator and digital demodulator may also be configured in an analog-to-digital converter that includes a comparator and successive approximation register (SAR) logic, rather than an ADC core, in a SAR implementation. Multi-lane, interleaved analog-to-digital conversion circuits are also described using the inventive techniques. Analog-to-digital converters including DC offset components and methods performed according to the inventive techniques are also described.
Abstract:
Methods, systems, and apparatuses, including electrical circuits, are described for spread spectrum ADC noise reduction. An analog-to-digital converter may include an analog modulator to modulate an input analog signal according to a pseudo-noise sequence. An ADC core may convert the modulated analog input signal to a digital signal representation thereof. The digital signal may be demodulated using the pseudo-noise sequence to generate a noise-spread signal with reduced noise spectral density. The analog modulator and digital demodulator may also be configured in an analog-to-digital converter that includes a comparator and successive approximation register (SAR) logic, rather than an ADC core, in a SAR implementation. Multi-lane, interleaved analog-to-digital conversion circuits are also described using the inventive techniques. Analog-to-digital converters including DC offset components and methods performed according to the inventive techniques are also described.
Abstract:
Disclosed are various embodiments for reducing the amount of electromagnetic interference (EMI) that may be present in a received signal. A frequency component for the received component is generated. An EMI frequency, an EMI phase, and an EMI amplitude present in the frequency component are tracked. Cancelling data is generated responsive to the EMI frequency, the EMI phase, and the EMI amplitude present in the frequency component.
Abstract:
Highly power efficient transmitter output stage designs are provided. In an embodiment, the probability density function (PDF) of an input signal is divided into a plurality of regions, and samples of the input signal are processed depending on the region of the PDF within which they fail. The PDF can be divided between an inner region corresponding to samples of the input signal that are within a predetermined amplitude range, and outer regions corresponding to samples of the input signal that are outside of the predetermined amplitude range. Samples of the input signal that fall in the inner region are processed by a class A biased amplifier and samples of the input signal that fall in the outer regions are processed by a class B biased amplifier. Output stage designs according to embodiments can be implemented as power amplifiers or power digital-to-analog converters (DACs).
Abstract:
A method for digitizing an analog signal through a pipelined analog-to-digital converter (ADC) may include pipelining a sample sub-stage, a quantization sub-stage and an amplification sub-stage to an ADC lane. Within a first of multiple pipelined stages, clock phases may be assigned to the ADC lane, including a sample clock phase, a quantization clock phase, and an amplification clock phase such that the quantization clock phase is non-overlapping with the sample clock phase and the amplification clock phase. The non-overlapping feature may be facilitated by generating multiple reference clock phases for the sub-stages of multiple ADC lanes, and interleaving assignment of the sample clock phase, the quantization clock phase, and the amplification clock phase to the reference clock phases among the multiple lanes.
Abstract:
In some aspects, the disclosure is directed to methods and systems of a multi-input receiver. In one or more embodiments, a receiver receives a plurality of signals each via a respective one of a plurality of wireless channels. In one or more embodiments, a processing stage of the receiver combines the received plurality of signals into a combined signal for input to an analog-to-digital converter (ADC) of the receiver. In one or more embodiments, the ADC generates, at a predetermined sampling frequency, samples of the combined signal. In one or more embodiments, the receiver recovers from the generated samples at least one signal component corresponding to at least one of the plurality of signals.
Abstract:
An Analog to Digital Converter (ADC) includes an ADC core, a first switched capacitor voltage regulator, and a second switched capacitor voltage regulator. The ADC core includes a plurality of digital components that sample an incoming signal based on an ADC clock, a first voltage, and a first ground and a plurality of analog components configured to operate using a second voltage and a second ground. The first switched capacitor voltage regulator produces the first voltage and the first ground for the plurality of digital components using a supply voltage, a supply ground, and the ADC clock. The second switched capacitor voltage regulator produces the second voltage and the second ground using the supply voltage, the supply ground, and the ADC clock. Switching of the first and second switched capacitor voltage regulators is performed using complementary and non-overlapping clocks having switching frequency that is based upon the ADC clock.
Abstract:
An analog-to-digital converter (ADC) utilizing a capacitor array during multiple conversion stages and amplifier sharing across multiple lanes. In various embodiments, the ADC includes N lanes, each of the lanes including a capacitor array. A plurality of switches coupled to each capacitor array selectively redistributes a sampled charge during N clock phases corresponding to N conversion stages, the conversion stages including a sampling stage performed on an analog input signal, at least one quantization stage, and N−2 multiplying digital-to-analog conversion (MDAC) stages for generating residue voltages. The MDAC stages utilize a plurality of N−2 amplifiers shared by the N lanes. In operation, each amplifier may be used in an interleaved manner to support, during a given clock phase, an MDAC stage of one of the lanes of the ADC. Likewise, one or more comparators of a lane may be leveraged to perform multiple quantization stages during the N clock phases.
Abstract:
Highly power efficient transmitter output stage designs are provided. In an embodiment, the probability density function (PDF) of an input signal is divided into a plurality of regions, and samples of the input signal are processed depending on the region of the PDF within which they fall. The PDF can be divided between an inner region corresponding to samples of the input signal that are within a predetermined amplitude range, and outer regions corresponding to samples of the input signal that are outside of the predetermined amplitude range. Samples of the input signal that fall in the inner region are processed by a class A biased amplifier and samples of the input signal that fall in the outer regions are processed by a class B biased amplifier. Output stage designs according to embodiments can be implemented as power amplifiers or power digital-to-analog converters (DACs).
Abstract:
In some aspects, the disclosure is directed to methods and systems of a multi-input receiver. In one or more embodiments, a receiver receives a plurality of signals each via a respective one of a plurality of wireless channels. In one or more embodiments, a processing stage of the receiver combines the received plurality of signals into a combined signal for input to an analog-to-digital converter (ADC) of the receiver. In one or more embodiments, the ADC generates, at a predetermined sampling frequency, samples of the combined signal. In one or more embodiments, the receiver recovers from the generated samples at least one signal component corresponding to at least one of the plurality of signals.