摘要:
A method for implementing scheduling mechanisms with selectable resource modes comprises at least one resource characterization set that includes a plurality of resource characterizations that each have resource requirements for executing a requested process. The plurality of resource characterizations may include a most mode, a best mode, and a worst mode. An allocation manager may then select a resource mode, and compare the corresponding resource requirements for the requested process to the currently-available device resources. The allocation manager may then authorize or deny the requested process depending upon whether the currently-available resources are sufficient to adequately service the resource requirements of the requested process.
摘要:
A method for providing optimal performance in an electronic device comprises at least one resource characterization that includes resource requirements for executing a requested process. An allocation manager may then compare the resource requirements for the requested process to the currently-available device resources. The allocation manager may then authorize or deny the requested process depending upon whether the currently-available resources are sufficient to adequately service the resource requirements of the requested process.
摘要:
A method for implementing a multi-level system model for deterministically handling selected data comprises a picokernel module that invokes an isochronous scheduler to select, schedule, and execute active isochronous processes on an electronic device in response to a cycle start signal from an isochronous clock. The active isochronous processes may selectively set plesiochronous flags to thereby designate corresponding plesiochronous processes as active plesiochronous processes. Once all active isochronous processes have been executed in a given isochronous cycle, then the picokernel may invoke a plesiochronous scheduler to select, schedule, and execute any active plesiochronous processes on the electronic device.
摘要:
A system and method for effectively implementing isochronous processor cache comprises a memory device for storing high-priority isochronous information, an isochronous cache coupled to the memory device for locally caching the isochronous information from the memory device, and a processor device for accessing and utilizing the isochronous information that is stored in the isochronous cache. The isochronous cache is reserved for storing the isochronous information, and may be reconfigured into a selectable number of cache channels of varying size that each corresponds to an associated isochronous process.
摘要:
A system and method for effectively performing isochronous data transfers comprises a network device including an input/output (I/O) bus that is coupled to an input/output (I/O) node and an isochronous-capable network interface. The network interface and the I/O node may send requests to an arbiter for control of the I/O bus to perform a data transfer operation. In accordance with the present invention, an arbiter filter is interposed between the arbiter and both the network interface and the I/O node to filter respective requests for control of the I/O bus. The network interface advantageously provides an isochronous request to the arbiter filter to thereby de-assert conflicting requests so that the network interface may effectively perform a time-sensitive isochronous data transfer.
摘要:
A system and method for effectively implementing isochronous processor cache comprises a memory device for storing high-priority isochronous information, an isochronous cache coupled to the memory device for locally caching the isochronous information from the memory device, and a processor device for accessing and utilizing the isochronous information that is stored in the isochronous cache. The isochronous cache is reserved for storing the isochronous information, and may be reconfigured into a selectable number of cache channels of varying size that each corresponds to an associated isochronous process.
摘要:
A system and method to effectively compensate for delays in an electronic interconnect comprises a controller that initially schedules a first transmission from a first talker device to several listener devices. The controller then schedules a second talker device to pre-roll a second transmission and selectively routes the second transmission to compensate for delays introduced by components of said electronic interconnect to thereby provide a seamless transmission stream to the several listeners.
摘要:
A system and method for effectively performing isochronous data transfers comprises a network device including an input/output (I/O) bus that is coupled to an input/output (I/O) node and an isochronous-capable network interface. The network interface and the I/O node may send requests to an arbiter for control of the I/O bus to perform a data transfer operation. In accordance with the present invention, an arbiter filter is interposed between the arbiter and both the network interface and the I/O node to filter respective requests for control of the I/O bus. The network interface advantageously provides an isochronous request to the arbiter filter to thereby de-assert conflicting requests so that the network interface may effectively perform a time-sensitive isochronous data transfer.
摘要:
A method for utilizing concurrent context switching to support isochronous processes preferably comprises a main context that is configured to support system execution tasks, a first concurrent context that supports a first set of concurrent execution and loading procedures, and a second concurrent context that supports a second set of concurrent execution and loading procedures. A context control module preferably manages switching and loading procedures between the main context, the first concurrent context, and the second concurrent context. The context control module may perform successive concurrent context switching procedures by alternating between the first concurrent context and the second concurrent context to thereby sequentially support any desired number of isochronous processes.
摘要:
An asynchronous data pipe (ADP) automatically generates transactions necessary to complete asynchronous data transfer operations for an application over a bus structure. The ADP includes a register file which is programmed and initiated by the application. The register file includes the bus speed, transaction label, transaction code, destination node identifier, destination offset address, length of each data packet, packet counter, packet counter bump field, control field and a status field. During a data transfer operation, the ADP generates the transactions necessary to complete the operation over the appropriate range of addresses, using the information in the register file as a template. The ADP increments the value in the destination offset address field for each transaction according to the length of each data packet, unless the incrementing feature has been disabled and the transactions are to take place at a fixed address. The packet counter represents the number of transactions remaining to be generated. The packet counter value is decremented after each packet of data is transferred. The application can increment the packet counter value by writing to the packet counter bump field. A multiplexer is included within a system having multiple ADPs for multiplexing the information from the ADPs onto the bus structure. A demultiplexer is included within a system having multiple ADPs for routing information from the bus structure to the appropriate ADP.