摘要:
The present invention relates to a semiconductor device structure that includes at least one SRAM cell formed in a substrate. Such SRAM cell comprises two pull-up transistors, two pull-down transistors, and two pass-gate transistors. The pull-down transistors and the pass-gate transistors are substantially similar in channel widths and have substantially similar source-drain doping concentrations, while the SRAM cell has a beta ratio of at least 1.5. The substrate preferably comprises a hybrid substrate with at two isolated sets of regions, while carrier mobility in these two sets of regions differentiates by a factor of at least about 1.5. More preferably, the pull-down transistors of the SRAM cell are formed in one set of regions, and the pass-gate transistors are formed in the other set of regions, so that current flow in the pull-down transistors is larger than that in the pass-gate transistors.
摘要:
The present invention relates to a semiconductor device structure that includes at least one SRAM cell formed in a substrate. Such SRAM cell comprises two pull-up transistors, two pull-down transistors, and two pass-gate transistors. The pull-down transistors and the pass-gate transistors are substantially similar in channel widths and have substantially similar source-drain doping concentrations, while the SRAM cell has a beta ratio of at least 1.5. The substrate preferably comprises a hybrid substrate with at two isolated sets of regions, while carrier mobility in these two sets of regions differentiates by a factor of at least about 1.5. More preferably, the pull-down transistors of the SRAM cell are formed in one set of regions, and the pass-gate transistors are formed in the other set of regions, so that current flow in the pull-down transistors is larger than that in the pass-gate transistors.
摘要:
An integrated semiconductor structure containing at least one device formed upon a first crystallographic surface that is optimal for that device, while another device is formed upon a second different crystallographic surface that is optimal for the other device is provided. The method of forming the integrated structure includes providing a bonded substrate including at least a first semiconductor layer of a first crystallographic orientation and a second semiconductor layer of a second different crystallographic orientation. A portion of the bonded substrate is protected to define a first device area, while another portion of the bonded substrate is unprotected. The unprotected portion of the bonded substrate is then etched to expose a surface of the second semiconductor layer and a semiconductor material is regrown on the exposed surface. Following planarization, a first semiconductor device is formed in the first device region and a second semiconductor device is formed on the regrown material.
摘要:
MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
摘要:
A method for preventing polysilicon stringer formation under the active device area of an isolated ultra-thin Si channel device is provided. The method utilizes a chemical oxide removal (COR) processing step to prevent stinger formation, instead of a conventional wet etch process wherein a chemical etchant such as HF is employed. A silicon-on-insulator (SOI) structure is also provided. The structure includes at least a top Si-containing layer located on a buried insulating layer; and an oxide filled trench isolation region located in the top Si-containing layer and a portion of the buried insulating layer. No undercut regions are located beneath the top Si-containing layer.
摘要:
MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
摘要:
A hybrid substrate having a high-mobility surface for use with planar and/or multiple-gate metal oxide semiconductor field effect transistors (MOSFETs) is provided. The hybrid substrate has a first surface portion that is optimal for n-type devices, and a second surface portion that is optimal for p-type devices. Due to proper surface and wafer flat orientations in each semiconductor layers of the hybrid substrate, all gates of the devices are oriented in the same direction and all channels are located on the high mobility surface. The present invention also provides for a method of fabricating the hybrid substrate as well as a method of integrating at least one planar or multiple-gate MOSFET thereon.
摘要:
Ultra thin body fully-depleted silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect-transistors (MOSFETs) in which the SOI thickness changes with gate-length variations thereby minimizing the threshold voltage variations that are typically caused by SOI thickness and gate-length variations are provided. Such a SOI MOSFET may include a SOI substrate having a SOI layer in which a first portion thereof has a thickness of less than 20 nm; a gate including a gate dielectric and a gate electrode located atop the first portion of the SOI layer having the thickness, the gate electrode having an upper surface and a bottom surface that have the same length or the bottom surface has a length that is greater than the upper surface; and source and drain diffusion regions located in a second portion of the SOI layer that is adjacent to the first portion, and the second portion of the SOI layer is thicker than the first portion.
摘要:
A double-gate transistor having front (upper) and back gates that are aligned laterally is provided. The double-gate transistor includes a back gate thermal oxide layer below a device layer; a back gate electrode below a back gate thermal oxide layer; a front gate thermal oxide above the device layer: a front gate electrode layer above the front gate thermal oxide and vertically aligned with the back gate electrode; and a transistor body disposed above the back gate thermal oxide layer, symmetric with the first gate. The back gate electrode has a layer of oxide formed below the transistor body and on either side of a central portion of the back gate electrode, thereby positioning the back gate self-aligned with the front gate. The transistor also includes source and drain electrodes on opposite sides of said transistor body.
摘要:
A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.