摘要:
An integrated semiconductor structure containing at least one device formed upon a first crystallographic surface that is optimal for that device, while another device is formed upon a second different crystallographic surface that is optimal for the other device is provided. The method of forming the integrated structure includes providing a bonded substrate including at least a first semiconductor layer of a first crystallographic orientation and a second semiconductor layer of a second different crystallographic orientation. A portion of the bonded substrate is protected to define a first device area, while another portion of the bonded substrate is unprotected. The unprotected portion of the bonded substrate is then etched to expose a surface of the second semiconductor layer and a semiconductor material is regrown on the exposed surface. Following planarization, a first semiconductor device is formed in the first device region and a second semiconductor device is formed on the regrown material.
摘要:
An integrated semiconductor structure containing at least one device formed upon a first crystallographic surface that is optimal for that device, while another device is formed upon a second different crystallographic surface that is optimal for the other device is provided. The method of forming the integrated structure includes providing a bonded substrate including at least a first semiconductor layer of a first crystallographic orientation and a second semiconductor layer of a second different crystallographic orientation. A portion of the bonded substrate is protected to define a first device area, while another portion of the bonded substrate is unprotected. The unprotected portion of the bonded substrate is then etched to expose a surface of the second semiconductor layer and a semiconductor material is regrown on the exposed surface. Following planarization, a first semiconductor device is formed in the first device region and a second semiconductor device is formed on the regrown material.
摘要:
An integrated semiconductor structure containing at least one device formed upon a first crystallographic surface that is optimal for that device, while another device is formed upon a second different crystallographic surface that is optimal for the other device is provided. The method of forming the integrated structure includes providing a bonded substrate including at least a first semiconductor layer of a first crystallographic orientation and a second semiconductor layer of a second different crystallographic orientation. A portion of the bonded substrate is protected to define a first device area, while another portion of the bonded substrate is unprotected. The unprotected portion of the bonded substrate is then etched to expose a surface of the second semiconductor layer and a semiconductor material is regrown on the exposed surface. Following planarization, a first semiconductor device is formed in the first device region and a second semiconductor device is formed on the regrown material.
摘要:
Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
摘要:
The present invention provides integrated semiconductor devices that are formed upon an SOI substrate having different crystal orientations that provide optimal performance for a specific device. Specifically, an integrated semiconductor structure including at least an SOI substrate having a top semiconductor layer of a first crystallographic orientation and a semiconductor material of a second crystallographic orientation, wherein the semiconductor material is substantially coplanar and of substantially the same thickness as that of the top semiconductor layer and the first crystallographic orientation is different from the second crystallographic orientation is provided. The SOI substrate is formed by wafer bonding, ion implantation and annealing.
摘要:
The present invention provides integrated semiconductor devices that are formed upon an SOI substrate having different crystal orientations that provide optimal performance for a specific device. Specifically, an integrated semiconductor structure including at least an SOI substrate having a top semiconductor layer of a first crystallographic orientation and a semiconductor material of a second crystallographic orientation, wherein the semiconductor material is substantially coplanar and of substantially the same thickness as that of the top semiconductor layer and the first crystallographic orientation is different from the second crystallographic orientation is provided. The SOI substrate is formed by wafer bonding, ion implantation and annealing.
摘要:
A structure for conducting carriers and method for forming is described incorporating a single crystal substrate of Si or SiGe having an upper surface in the and a psuedomorphic or epitaxial layer of SiGe having a concentration of Ge different than the substrate whereby the psedomorphic layer is under strain. A method for forming semiconductor epitaxial layers is described incorporating the step of forming a psuedomorphic or epitaxial layer in a rapid thermal chemical vapor deposition (RTCVD) tool by increasing the temperature in the tool to about 600° C. and introducing both a Si containing gas and a Ge containing gas. A method for chemically preparing a substrate for epitaxial deposition is described including the steps of immersing a substrate in a series of baths containing ozone, dilute HF, deionized water, HCL acid and deionized water, respectively, followed by drying the substrate in an inert atmosphere to obtain a substrate surface free of impurities and with a root mean square (RMS) surface roughness of less than 0.1 run.
摘要:
A hybrid substrate having a high-mobility surface for use with planar and/or multiple-gate metal oxide semiconductor field effect transistors (MOSFETs) is provided. The hybrid substrate has a first surface portion that is optimal for n-type devices, and a second surface portion that is optimal for p-type devices. Due to proper surface and wafer flat orientations in each semiconductor layers of the hybrid substrate, all gates of the devices are oriented in the same direction and all channels are located on the high mobility surface. The present invention also provides for a method of fabricating the hybrid substrate as well as a method of integrating at least one planar or multiple-gate MOSFET thereon.
摘要:
Ultra thin body fully-depleted silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect-transistors (MOSFETs) in which the SOI thickness changes with gate-length variations thereby minimizing the threshold voltage variations that are typically caused by SOI thickness and gate-length variations are provided. Such a SOI MOSFET may include a SOI substrate having a SOI layer in which a first portion thereof has a thickness of less than 20 nm; a gate including a gate dielectric and a gate electrode located atop the first portion of the SOI layer having the thickness, the gate electrode having an upper surface and a bottom surface that have the same length or the bottom surface has a length that is greater than the upper surface; and source and drain diffusion regions located in a second portion of the SOI layer that is adjacent to the first portion, and the second portion of the SOI layer is thicker than the first portion.
摘要:
A method of creating ultra tin body fully-depleted SOI MOSFETs in which the SOI thickness changes with gate-length variations thereby minimizing the threshold voltage variations that are typically caused by SOI thickness and gate-length variations is provided. The method of present invention uses a replacement gate process in which nitrogen is implanted to selectively retard oxidation during formation of a recessed channel. A self-limited chemical oxide removal (COR) processing step can be used to improve the control in the recessed channel step. If the channel is doped, the inventive method is designed such that the thickness of the SOI layer is increased with shorter channel length. If the channel is undoped or counter-doped, the inventive method is designed such that the thickness of the SOI layer is decreased with shorter channel length.