摘要:
A disk drive includes a rotatable data storage disk, a transducer, an actuator, and a controller. The transducer is configured to read and write data on the disk. The actuator is configured to position the transducer relative to defined portions of the disk. The controller is configured to write a predetermined magnetic polarity pattern on a buffer portion of the disk to erase data thereon. The controller also determines whether the disk drive has reached a threshold operating temperature, and to selectively direct data from a host device, which is addressed for an associated original block address on the disk, to be written to the buffer portion of the disk when the disk drive has not reached the threshold operating temperature. The controller later copies the data from the buffer portion of the disk to the original block address on the disk and then erases the data from the buffer portion of the disk.
摘要:
A method of controlling a disk drive that reduces the space on the data storage surface of a storage disk otherwise effectively required to be taken up by embedded servo sectors. In disk drives employing wide-writer, narrow-reader, dual element heads, each servo burst field ends with a burst correction value (BCV) field. This BCV field enables the wide-writer head to be accurately positioned within track boundaries before writing begins to the data sector following a servo sector. The present invention takes advantage of the fact that burst correction values are only required by the head incident to data writing operations. Since a finite settle time is required to switch the read channel from servo mode to user data mode, and since the BCV field is not needed for reading operations, mode switching and channel settling can begin while the head is still passing over the BCV field. Sooner switch over from servo mode to user data read mode means that the blanking interval, and concomitant disk space, heretobefore required by the prior art approach, is completely avoided by the new disk drive control method.
摘要:
Methods and systems involve collecting memory device parameters and using memory device parameters to determine memory wear information. A set of first parameters associated with wear of the memory device is monitored for at least one memory unit of the memory device. The first parameters are compared to respective trigger criterion. If the comparison reveals that one or more of the first parameters are beyond their trigger criterion, then collection of a second set of parameters is triggered. The second parameters are also indicative of the wear of the memory device. The set of first parameters may overlap the set of second parameters. The set of second parameters are used to develop memory wear information. In some implementations, the memory wear information may be configuration information used to configure the read/write channel to compensate for wear of the memory device. In some implementations, the memory wear information may be used to predict or estimate the lifetime of the device.
摘要:
A nominal reference read operation compares analog voltages of the memory cells to at least one nominal reference voltage. A shifted reference read operation compares the analog voltages of the memory cells to at least one shifted reference voltage that is shifted from the nominal reference voltage to compensate for an expected change in the analog voltages of the memory cells. Data stored in the memory cells is decoded by a first decoding process that uses the information from either the nominal reference read operation or the shifted reference read operation. The data stored in the memory cells is decoded by a second decoding process that uses the information from both the nominal reference read operation and the shifted reference read operation.
摘要:
A disk drive includes a rotatable data storage disk, a head, a heater element, and a controller. The disk includes a plurality of data sectors between servo spokes. The head is configured to fly on an air cushion relative to the rotating disk while writing data on the data sectors. The heater element is attached to the head and configured to controllably heat the head responsive to a heater signal. The controller determines an upcoming pattern of selected ones of the data sectors on which data is to be written through the head in response to at least one write command from a host device, and controls the heater signal in response to the determined upcoming pattern of data sectors on which data is to be written.
摘要:
An iterative decoder is controlled to iteratively decode a block by performing one or more decoding iterations for the block during a predetermined block time. The iterative decoder is further controlled to perform more decoding iterations for the block during a time in which the hardware of the iterative decoder is available, if the block fails to converge to correct data during the predetermined block time. The iterative decoder uses a parity-check matrix and can be configured to process that parity-check matrix for parallel, sequential or a combination of parallel and sequential (“hybrid”) parity constraint updates.
摘要:
An apparatus includes a host port for coupling to a host. A storage disk is coupled to a disk port. A memory is provided for storing opcodes, data buffer pointers associated with the opcodes, and data in data buffers indicated by the data buffer pointers. A data transfer circuit is provided to store an address corresponding to a selected one of the opcodes. The data transfer circuit is responsive to a mode indicated by the selected opcode to transfer data between a selected data buffer associated with the selected opcode and one of the ports.
摘要:
An iterative decoder is controlled to iteratively decode a block by performing one or more decoding iterations for the block. The iterative decoder uses a parity-check matrix and can be configured to process that parity-check matrix for parallel, sequential or a combination of parallel and sequential (“hybrid”) parity constraint updates.
摘要:
A method of storing data on a surface of a storage disk, the data being capable of verifying an identity of the surface, includes determining first check data from first alignment correction data associated with a first storage surface. The method also includes determining second check data from second alignment correction data associated with a second storage surface such that the second check data is different from the first check data if the first and second alignment correction data are identical. The method further includes writing the first and second check data to the first and second storage surfaces in association with the first and second alignment correction data, respectively.
摘要:
A method of data transfer in a data processing system having at least one source buffer and at least one destination buffer. The source buffer includes a plurality of data blocks, each data block having an address and being for storage of data including an identifier uniquely identifying that data block. The destination buffer includes a plurality of data blocks corresponding to the data blocks of the source buffer, each destination block having an address and being for storage of data. Each source block identifier is a function of a corresponding destination block address. Transferring data from the source buffer to the destination buffer includes: (a) obtaining the address of a data block in the destination buffer to transfer data into; (b) obtaining the address of a corresponding data block in the source buffer to transfer data from; and (c) checking the integrity of said addresses before data transfer, including: (i) retrieving the source block identifier in the source block via the source block address; (ii) generating an expected identifier value for the source block from the address of the destination block via said function relation between the source block identifier and the destination block address; (iii) comparing the expected identifier value with the retrieved identifier value; and (iv) if there is a mismatch, signaling an error condition representing corruption of one or more of the source block and the destination block addresses.