摘要:
Compositions are provided for increasing the electrical conductivity of concrete or controlled low-strength materials (flowable fill). One composition sets to produce a concrete and includes from 1% to 30% by weight of portland cement; from 1% to 30% by weight of fly ash having a carbon content as measured by loss on ignition of greater than 12%; from 40% to 90% by weight of an aggregate; from 0.1% to 20% by weight of carbon fibers; and water in a sufficient amount such that the composition sets to a concrete. Another composition is a self-compacting, cementitious flowable fill composition that includes from 1% to 30% by weight of portland cement; from 5% to 85% by weight of fly ash; from 0.1% to 20% by weight of carbon fibers; and water in a sufficient amount such that the composition sets to a material having a compressive strength of 8.3 MPa or less.
摘要:
Compositions for producing electrically conductive controlled low-strength material and electrically conductive concrete are provided, comprising conventional components, but utilizing a non-standard, high carbon content, fly ash. One settable controlled low-strength material composition includes 1%-20% by weight of portland cement,18%-85% by weight of fly ash having a carbon content of greater than 12%, and water such that the composition sets to a material having a compressive strength of 8.3 MPa or less. One settable concrete composition includes 1%-30% by weight of portland cement, 1%-20% by weight of fly ash having a carbon content of greater than 12%, 40%-90% by weight of an aggregate, and water such that the composition sets to a concrete having a compressive strength of at least 13.8 MPa.
摘要:
Methods for increasing the amount of cenospheres in a fly ash sample are disclosed. The cenospheres are obtained in a dry state by using air as the “fluid” media for separation. In one version, the invention is a two step process, that is, screen by size followed by density separation such as in a fluidizing vertical column by density. In another version of the invention, the separation by density is followed by screening by size. Additional cycles can improve purity as defined by concentration of cenospheres.
摘要:
Methods for increasing the amount of cenospheres in a fly ash sample are disclosed. The cenospheres are obtained in a dry state by using air as the “fluid” media for separation. In one version, the invention is a two step process, that is, screen by size followed by density separation such as in a fluidizing vertical column by density. In another version of the invention, the separation by density is followed by screening by size. Additional cycles can improve purity as defined by concentration of cenospheres.
摘要:
A method for reducing the amount of mercury affixed to a sorbent and/or fly ash is disclosed. The method includes the steps of providing an amount of sorbent and/or fly ash wherein at least a portion of the amount of sorbent and/or fly ash has particulates having mercury compounds affixed to the particulates; and exposing the amount of sorbent and/or fly ash to heated flowing air until mercury compounds are liberated from at least some of the particulates. Preferably, the amount of sorbent and/or fly ash is maintained in the heated flowing air until the sorbent reaches a temperature of at least 700° F. (372° C.). When the sorbent is activated carbon, it is preferred that the amount of sorbent and/or fly ash is maintained in the heated flowing air until the activated carbon reaches a temperature in the range of 700° F. (372° C.) to 1000° F. (538° C.).
摘要:
Methods for increasing the amount of cenospheres in a fly ash sample are disclosed. The cenospheres are obtained in a dry state by using air as the “fluid” media for separation. In one version, the invention is a two step process, that is, screen by size followed by density separation such as in a fluidizing vertical column by density. In another version of the invention, the separation by density is followed by screening by size. Additional cycles can improve purity as defined by concentration of cenospheres.
摘要:
Methods for increasing the amount of cenospheres in a fly ash sample are disclosed. The cenospheres are obtained in a dry state by using air as the “fluid” media for separation. In one version, the invention is a two step process, that is, screen by size followed by density separation such as in a fluidizing vertical column by density. In another version of the invention, the separation by density is followed by screening by size. Additional cycles can improve purity as defined by concentration of cenospheres.
摘要:
A method and apparatus for the application of beat to remove ammonia compounds from fly ask, thereby making the fly ash a marketable product is disclosed. The method includes the steps of providing an amount of fly ash wherein at least a portion of the amount of fly ash comprises particulates having ammonia compounds affixed to the particulates, and exposing the fly ash to flowing air having a temperature of at least 1,500° F. (815 ° C.) such that the fly ash is maintained in the flowing air until the fly ash reaches a temperature of at last 900° F. (482 ° C.). The apparatus (8,9) includes a source of fly ash (10) comprising particulates having ammonia compounds affixed to at least some of the fly ash particulates, a beating chamber (17) including a treatment bed comprising a floor (20) having openings a fly ash supply conduit (16) in communication with the heating chamber (17) and the source of fly ash (10) for transferring fly ash from the source of fly ash to the treatment bed of the heating chamber, a source of heated air (45), an air supply conduit (55) in communication with the source of heated of heated air (45) and the heating chamber (17) for providing a flow of heated air to the treatment bed of the beating chamber for contacting the fly ash on the treatment bed with the flow of air, a heated air conduit (27) in communication with the beating chamber (17) for transferring the flow of heated air form the heating chamber, and an ash removal conduit (31) in communication with the heating chamber (17) for transferring heated fly ash from the heating chamber.
摘要:
An apparatus for the application of heat to remove ammonia compounds from fly ash is disclosed. The apparatus includes a source of fly ash comprising particulates having ammonia compounds affixed to the fly ash particulates, a heating chamber including a treatment bed comprising a media having openings, a fly ash supply conduit for transferring fly ash from the source of fly ash to the treatment bed of the heating chamber, a source of heated air, an air supply conduit for providing a flow of heated air to the treatment bed of the heating chamber for contacting the fly ash on the treatment bed with the flow of heated air, a heated air conduit in communication with the heating chamber for transferring the flow of heated air from the heating chamber, and an ash removal conduit in communication with the heating chamber for transferring heated fly ash from the heating chamber.
摘要:
A composition capable of setting to produce a building material is disclosed. The composition can include from 1% to 30% by weight of an activator, from 1% to 55% by weight of a pozzolan, such as fly ash; from 40% to 90% by weight of an aggregate; and liquid landfill leachate in a sufficient amount such that the composition sets to a building material having a compressive strength of at least 2 MPa, wherein all weight percentages are percent by weight of the total composition. The liquid landfill leachate replaces all or part of the tap water in a conventional composition for forming a building material. The liquid landfill leachate can be recovered after a liquid (typically water) percolates through a landfill and contacts at least one landfilled coal combustion product selected from fly ash, bottom ash, boiler slag, and flue gas desulfurization material. The building material can be a concrete, or a masonry unit.