Abstract:
A process for preparing aqueous polymer dispersions by emulsion polymerization of free-radically polymerizable compounds (monomers) comprises adding, during the polymerization of the monomers, a miniemulsion which is an aqueous, surfactant-stabilized emulsion of monomers whose emulsified droplets have a size of from 10 to 500 nm and which comprises a compound (stabilizer) which is dissolved in the monomers of the droplets and whose solubility in the monomers is at least twice its solubility in water.
Abstract:
The present invention relates to a process for preparing dye-comprising aqueous polymer dispersions by free-radical aqueous emulsion polymerization of ethylenically unsaturated monomers in the presence of free-radical initiators, in which at least some of the monomers are employed in the form of an oil-in-water emulsion E1 whose disperse phase comprises at least one oil-soluble dye, wherein the disperse phase of E1 is formed essentially of dye-comprising monomer droplets having a diameter
Abstract:
A process for preparing an aqueous polymer dispersion by free-radically initiated polymerization of free-radically polymerizable compounds I with moderate solubility in water, whose disperse polymer particles contain not only compounds I but also compounds II with a very low solubility in water where a mixture consisting of a portion of the compounds I and consisting of the compounds II is used to produce an aqueous emulsion I with a droplet size .ltoreq.500 nm, and at least a portion of the aqueous emulsion I is supplied continuously to the polymerization vessel as a feed stream I, in the course of continuing free-radical polymerization, during which the continuous feed stream I is accompanied, at least some of the time, by a feed stream II consisting of another portion of the compounds I or of the aqueous emulsion II thereof with a droplet size .gtoreq.1000 nm.
Abstract:
The present invention relates to an aqueous polymer dispersion which is obtainable by free-radical polymerization of a monomer mixture which comprises at least one amide-group-containing compound, at least one crosslinker and at least one monomer with at least one cationogenic and/or cationic group. The invention further relates to the polymers obtainable by drying such a polymer dispersion, and to cosmetic or pharmaceutical compositions which comprise such a polymer dispersion or such a polymer.
Abstract:
The present invention relates to a mono- and/or polyallyl-polyether-urethane, to water-soluble or water-dispersible polymers which comprise such a polyether-urethane in copolymerized form, and to cosmetic or pharmaceutical compositions which comprise a water-soluble or water-dispersible polymer based on a mono- and/or polyallyl-polyether-urethane.
Abstract:
A device for producing disperse mixtures by ultrasound, containing a housing, and a reaction chamber within the housing and at least one sonotrode having a free emitting surface which is directly in effective connection with the reaction chamber and whose end remote from the free emitting surface is coupled to an ultrasonic transducer, wherein the sonotrode is designed as a rod-shaped, axially emitting longitudinal oscillator with the emitting surface corresponding essentially to the surface of the reaction chamber, and wherein the reaction chamber depth which is essentially vertical with respect to the emitting surface is lower than a maximum effective depth of the sonotrode.
Abstract:
Ampholytic copolymers which contain a molar excess of anionogenic and/or anionic groups, polyelectrolyte complexes which contain such an ampholytic copolymer, cosmetic and pharmaceutical compositions which contain at least one such copolymer or polyelectrolyte complex and the use of these copolymers and polyelectrolyte complexes are described.
Abstract:
Process for production of polymer blends which are suitable as filter aids and are composed of polystyrene and of crosslinked water-insoluble polyvinylpyrrolidones via processing of the two components in an extruder, which comprises melting polystyrene in an extruder and then treating it with the polyvinylpyrrolidone, and adding, to the mixture of the components, from 0.1 to 10% by weight of water, based on the total amount of polystyrene and popcorn polymer, and extruding and comminuting the mixture.