摘要:
Focused ultrasound is a promising technology for neural stimulation that is non-invasive, and capable of passing through the skull. Here we use the isolated retina to characterize the effect of ultrasound on an intact neural circuit and compared these effects to those of visual stimulation of the same retinal ganglion cells. Ultrasound stimuli evoked precise, stable responses that looked qualitatively similar to strong visual responses but with shorter latency. We found that ultrasonic stimulation activates cells presynaptic to ganglion cells, which may include photoreceptors and interneurons. Ultrasonic stimulation is an effective and spatial-temporally precise method to activate the retina. Ultrasonic stimulation may have diagnostic potential to probe remaining retinal function in cases of photoreceptor degeneration, and therapeutic potential for use in a retinal prosthesis. In addition, ultrasound promises to be a useful tool to understand the dynamic activity in the interneuron population of the retina.
摘要:
Surface selective photoacoustic (PA) medical imaging is introduced. Surface selective PA imaging is responsive to surface features and does not image sub-surface features, in contrast to conventional PA imaging. The surface PA signal can be considerably larger than the bulk PA signal, for an air-coupled (or gas-coupled) acoustic transducer. Distinguishing these two signals based on time of arrival at the transducer can further distinguish the two signals. This approach provides numerous advantages.Non-contact imaging simplifies and expedites imaging, and can serve as a replacement for visual inspection by physicians. Applications include skin screening and endoscopy.
摘要:
The current invention provides an ultrasound-assisted delivery device, that includes a focused ultrasound transducer having an ultrasound focal point, a real-time imaging device having an imaging focal point, and a therapeutic delivery device, where the transducer and the imaging device are integrated with the delivery device, and the ultrasound focal point coincides with the imaging focal point, where the delivery device and transducer are disposed to provide an unobstructed imaging path for the real-time imaging device. The invention further includes a scanning optical or laser beam having a focal point disposed to sweep across the target, where the delivery device is disposed to deliver an optical contrast material to the target, and the scanning focal point coincides with the ultrasound and imaging focal points, where the target or the optical contrast material react to the scanning beam to generate at least one interface signal.
摘要:
Surface selective photoacoustic (PA) medical imaging is introduced. Surface selective PA imaging is responsive to surface features and does not image sub-surface features, in contrast to conventional PA imaging. The surface PA signal can be considerably larger than the bulk PA signal, for an air-coupled (or gas-coupled) acoustic transducer. Distinguishing these two signals based on time of arrival at the transducer can further distinguish the two signals. This approach provides numerous advantages. Non-contact imaging simplifies and expedites imaging, and can serve as a replacement for visual inspection by physicians. Applications include skin screening and endoscopy.
摘要:
Peak blood velocity measurement for automated stenosis detection is provided. Ultrasound measurements of the peak blood velocity are corrected by a calculation of the Doppler angle, which exists from misalignment of the ultrasound transducer axis and the true blood velocity. The direction of the blood velocity and the Doppler angle are found by imaging a set of planar cross-sections of a blood vessel, such as the carotid artery, to obtain velocity maps of the blood flowing in the blood vessel. Peak blood velocity can be correlated with an amount of stenosis therefore accurate peak blood velocity measurements are necessary for medical diagnosis. Automated stenosis detection allows for implementation in many medical settings. A capacitive micromachined ultrasound transducer array is also provided to measure the planar cross-sectional images.
摘要:
The current invention provides an ultrasound-assisted delivery device, that includes a focused ultrasound transducer having an ultrasound focal point, a real-time imaging device having an imaging focal point, and a therapeutic delivery device, where the transducer and the imaging device are integrated with the delivery device, and the ultrasound focal point coincides with the imaging focal point, where the delivery device and transducer are disposed to provide an unobstructed imaging path for the real-time imaging device. The invention further includes a scanning optical or laser beam having a focal point disposed to sweep across the target, where the delivery device is disposed to deliver an optical contrast material to the target, and the scanning focal point coincides with the ultrasound and imaging focal points, where the target or the optical contrast material react to the scanning beam to generate at least one interface signal.
摘要:
Imaged-guided therapy for minimally invasive surgeries and interventions is provided. An image-guided device includes an elongate tubular member, such as a catheter, an annular array of capacitive micromachined ultrasound transducers (cMUTs) for real-time three-dimensional forward-looking acoustic imaging, and a therapeutic tool. The therapeutic tool is positioned inside an inner lumen of the elongate tubular member and can be a device for tissue ablation, such as a high intensity focused ultrasound (HIFU) device or a laser. The HIFU device is operable at high frequencies to have a sufficiently small focus spot, thus a high focal intensity. The imaging annular array is also operable at high frequencies for good acoustic imaging resolution. The high resolution forward-looking imaging array, in combination with the high frequency HIFU transducer, provides a single image-guided therapy device for precise tissue ablation and real-time imaging feedback.
摘要:
A compression post capacitive micromachined ultrasonic transducer (CMUT) is provided. The compression post CMUT includes a first electrode, a top conductive layer having a pattern of post holes, a moveable mass that includes the first electrode. The compression post CMUT further includes an operating gap disposed between the top surface of the top conductive layer and a bottom surface of the moveable mass, a pattern of compression posts, where a proximal end the compression post is connected perpendicularly to a bottom surface of the moveable mass, where the pattern of compression posts span through the pattern of post holes. The top conductive layer includes the second electrode that is electronically insulated from the first electrode, where the pattern of compression posts compress to provide a restoring force in a direction that is normal to the bottom surface of the moveable mass.
摘要:
An invention for coherent array image formation and restoration is taught. The invention is applicable for both 2D and 3D imaging using either 1D or 2D arrays, respectively. A transducer array is subdivided into subarrays, each subarray having a number of adjacent array elements. All elements of each subarray transmit and receive in parallel. The signals received from each subarray are delayed and summed to form scan lines, or beams. The low-beam-rate beams formed from each subarray are upsampled and interpolated prior to forming high-beam-rate images. Depending on the subarray geometry, a subarray-dependent restoration filter is also applied to the subarray beams. The restored beams from each subarray are combined to form the final high-beam-rate image. The invention significantly reduces the front-end hardware complexity compared to conventional methods such as full phased array imaging with comparable image quality.
摘要:
A system and method for monitoring one or more parameters relating to blood, such as cardiac output, of a patient is provided. The system preferably includes an acoustic energy transducer unit configured and positioned to transmit acoustic energy into a target structure, preferably a blood vessel, within the patient so as to induce a measurable change, preferably a change in blood volume, within the target structure. The transducer unit can be an ultrasonic array, annular array, or groups thereof, or a single element transducer. The unit can also be a vibrator or acoustic loudspeaker. An optical transmitter transmits light into the target structure, and an optical receiver senses light scattered from within the target structure. The blood parameter can then be estimated from the sensed scattered radiation. Relative blood oxygen saturation in the blood vessel can be estimated by transmitting two wavelengths to measure oxy-hemoglobin and deoxy-hemoglobin.