摘要:
A micro robot driving system for endoscope can move a micro robot forward, backward or changing the direction by transmitting rotation force generated by a driving means to a worm gear or a gear tooth shaped belt by a worm. The micro robot driving system in accordance with the present invention includes a micro robot body, rotational force transmitting means installed in the body, for transmitting rotational force generated by driving means and movement means which is connected with the rotational force transmitting means, protruded from the body, for moving the body by rotational force transmitted by the rotational force transmitting means.
摘要:
A micro robot that can move for itself is provided. The micro robot moves by moving a plurality of legs with a plurality of cams driven by a driving device, which comprises a micro robot body, a rotational shaft installed in the body and connected to driving device for generating rotational force, a plurality of cams positioned sequentially and connected to the rotational shaft having a certain phase difference centering around the rotational shaft, a plurality of legs installed in the body capable of moving by rotation of the cams, said legs being abutted to the respective cams at one end portion thereof and protruding outwardly from the body at the other end portion thereof, respectively and a locomotion device for moving the body.
摘要:
A micro-robot for colonoscope with motor locomotion comprises an information detecting unit for obtaining information of the interior of the colon and a driving unit for generating its own locomotion and moving the information detecting unit without causing any damages to the walls of the colon.
摘要:
A micro capsule robot comprises a body unit; a body movement control unit, which is installed on an outer circumferential surface of the body unit, including a linear driving device, and wings which are unfolded from the outer circumferential surface of the body unit by operation of the linear driving device for delaying or stopping the movement of the body unit; and a controlling unit installed in the body unit for controlling the body movement delay unit.
摘要:
A self-propelled endoscopic micro-robot, comprising a head for obtaining the errorless information of an interior of a tubular organ; an impact force generating unit connected the head generating an impact force according to a pneumatic pressure externally supplied and sucked by a air pressure supplier and making the self-propelled endoscopic micro-robot move in the tubular organ; and a plurality of supporting arms connected the head with end of the impact force for covering the impact force generating unit, making a housing of the self-propelled endoscopic micro-robot, and adjusting frictional force between the interior of the tubular organ and the housing as desired.
摘要:
An endoscope system with a hollow cylinder and bellows moving mechanism is provided. The system includes a cylinder having a head unit mounted by a camera devices, a front fixing unit connected to the head unit which is installed to an outer circumference of the cylinder and fixed to an inner wall of an organ, a rear fixing unit slidably installed at the outer circumference of the cylinder and fixed to the inner wall of the organ, and a moving unit between the front fixing unit and the rear fixing unit for moving the head unit in the organ by an extension and contraction when the front fixing unit or the rear fixing unit fixes the head unit to the inner wall of the organ. The moving unit includes a double bellows and forms a hermetic space with the outer circumference surface of the cylinder.
摘要:
In a micro capsule type robot for examining the internal organs of a human body, by installing stopping unit for stopping or delaying moving of a micro capsule type robot at a certain examination position of the internal organs according to a stop control signal inputted from outside of a human body, the micro capsule type robot can be fixed to a certain position of the internal organs of a human body or its movement can be delayed in case of need in spite of peristalsis of the internal organs in order to examine the certain position minutely, accordingly a lesion judgement rate can be improved and a diagnosis function of the micro capsule type robot can be heightened.
摘要:
A portable device for data communication using a body as a conductor to transmit data to a receiver, the portable device includes a data receiving unit to receive data, a controller unit to control processing of data to be transmitted, a current limiting circuit to limit a current of a signal corresponding to the data to be transmitted to a predetermined value, and transmitting electrodes connected to the current limiting circuit and to contact the body to transmit the signal having the current of predetermined value to the receiver.
摘要:
The present invention provides a method and apparatus for receiving data in a human body communication system. The receiving apparatus, which comprises plural receiving electrodes, selects the optimum pair of receiving electrodes when receiving data, so that it can improve quality of received information and obtain position information of a sensor in the human body.
摘要:
The present invention relates to a smart pipette for bio-cell manipulation which can freely change orientation of a bio-cell subject to the manipulation by using mechanical friction and applying instantaneous impact when penetrating the subject bio-cell while receiving real-time feedback of force/torque information of the bio-cell. Further, the present invention relates to a bio-cell manipulation method and system using a smart pipette, through which a bio-cell may be manipulated upon the application of the force/torque information generated during the cell manipulation to the smart pipette control. According to the present invention, injection position can be recognized precisely and conveniently regardless of the proficiency of the manipulating person. Thus, the bio-cell manipulation may be automated. Further, the smart pipette quantifies force/torque information feed-backed through the sensor unit and compares it with data acquired in advance through experiments on the same bio-cell. Further, through conducting impact driving when necessary, the present invention makes it possible to conduct bio-cell manipulation with minimum physical damage.