Abstract:
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units.
Abstract:
Provided is an imaging device that includes a pixel unit in which each of a plurality of pixels includes m photoelectric conversion units and each of at least a part of the plurality of pixels outputs a first signal based on signal charges of n photoelectric conversion unit or units, where n is less than m; an adder unit configured to add a plurality of first signals output from a plurality of pixels different from each other; a determination unit configured to compare each of the plurality of first signals and a predetermined threshold to determine whether or not the plurality of first signals added by the adder unit include a signal larger than a predetermined threshold; and an output unit configured to output a determination result and the added signal.
Abstract:
An image sensor including a pixel unit in which a plurality of pixels are arranged in a matrix, an A/D conversion circuit provided corresponding to each column of the matrix and configured to A/D-convert a pixel signal output from the pixel unit and output digital data corresponding to the pixel signal, a memory provided on each column, and a redundant data generation unit configured to generate redundant data based on a generating rule of an error correction code for the digital data, wherein the digital data and the redundant data are stored in the memory.
Abstract translation:一种图像传感器,包括:矩阵中排列有多个像素的像素单元; A / D转换电路,与所述矩阵的各列对应地设置,并对从像素单元输出的像素信号进行A / D转换;以及 输出对应于像素信号的数字数据,每列上提供的存储器,以及配置为基于数字数据的纠错码的生成规则生成冗余数据的冗余数据生成单元,其中数字数据和冗余数据 存储在存储器中。
Abstract:
Each of pixels in a pixel array includes a photoelectric converter and a readout circuit which outputs a signal in accordance with charges generated in the photoelectric converter. The readout circuit includes a group of transistors which are disposed so as to form a current path fed by a current source. The readout circuit of a pixel in a first line in the array and the readout circuit of a pixel in a second line in the array are disposed between the photoelectric converter of the pixel in the first line and the photoelectric converter of the pixel in the second line. Directions of currents respectively flowing through the group of transistors in the readout circuit of the pixel in the first line and the plurality of transistors in the readout circuit of the pixel in the second line are the same.
Abstract:
A solid-state imaging apparatus includes: a read out circuit configured to convert the analog signal generated by a pixel into a digital signal. The read out circuit includes an analog circuit, a digital circuit and a logic circuit arranged between the analog circuit and the digital circuit. The analog circuit is formed within first and second semiconductor regions of first and second conductivity type. The logic circuit is formed within third and fourth semiconductor regions of the first and second conductivity types. The digital circuit is formed within a fifth and sixth semiconductor regions of the first and second conductivity types. The first to sixth semiconductor regions are isolated one from another. And, a number of elements included in the logic circuit is smaller than a number of elements included in the digital circuit.
Abstract:
Ones of row addresses and column addresses of pixels in a first group are the same as those of a second group. A range of the others of the row addresses and the column addresses of the first group excludes that of the second group. A range of the others of row addresses and column addresses is included in a range of the others of the row addresses and the column addresses of the first and second groups. A portion of the range of the row addresses and the column addresses of the first group overlaps with that of the third group, and the other portion of the range of the first group does not overlap with that of the third group. Intra-group addition signals of the first, second, and third groups are obtained.
Abstract:
Ones of row addresses and column addresses of pixels in a first group are the same as those of a second group. A range of the others of the row addresses and the column addresses of the first group excludes that of the second group. A range of the others of row addresses and column addresses is included in a range of the others of the row addresses and the column addresses of the first and second groups. A portion of the range of the others of the row addresses and the column addresses of the first group overlaps with that of the third group, and the other portion of the range of the first group does not overlap with that of the third group. Intra-group addition signals of the first, second, and third groups are obtained.
Abstract:
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units.
Abstract:
A solid-state imaging apparatus includes: a plurality of pixels; a reference signal generating circuit configured to generate a ramp signal; a counter performing a counting operation according to the changing of the ramp signal; a read out circuit having a comparator comparing a signal read out from the pixel with the ramp signal, and converting an analog signal outputted from the pixel to a digital signal; and a control circuit configured to adjust a reset potential to be used when the comparator is reset, wherein the control circuit obtains a conversion value derived by converting an analog signal derived of a reset level of the pixel to a digital signal, and adjusts a reference potential based on the conversion value to make a dynamic range of A/D conversion follow the fluctuation of the reset level of the pixel.
Abstract:
An AD conversion unit AD-converts a first analog signal output from a clamping unit and generated based on a signal generated at a first photoelectric conversion unit. Then, while the first analog signal is clamped at a reference level, signals generated based on the signals generated at the first and second photoelectric conversion units are applied to the clamping unit, whereby the AD conversion unit AD-converts a second analog signal output from the clamping unit.