摘要:
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units.
摘要:
A display device includes a display region in which a plurality of pixels are arranged two-dimensionally. Each of the plurality of pixels includes a light-emitting layer and an optical member that refracts light from the light-emitting layer. In an orthographic projection of a first optical member included in a first pixel with respect to the light-emitting layer, a position of an apex of the first optical member and a position of a center of the first optical member are separated by a first distance.
摘要:
The present disclosure provides a photoelectric conversion apparatus which includes a semiconductor substrate, signal output units disposed on the semiconductor substrate, a plurality of photoelectric conversion layers disposed on a surface of the substrate, and an upper electrode in this order. The photoelectric conversion apparatus further includes insulation layers which are disposed between the plurality of photoelectric conversion layers and which have lines connected to power supply units. The upper electrode and the lines are electrically connected to each other on side surfaces of the insulation layers.
摘要:
A device uses a light-emitting material. The device includes an upper and a lower electrode, a first photoelectric conversion portion disposed between the upper electrode and the lower electrode, a second photoelectric conversion portion, a first readout circuit connected to the first photoelectric conversion portion, and a second readout circuit connected to the second photoelectric conversion portion. The second photoelectric conversion portion converts light emitted from the light-emitting material into electrical charges.
摘要:
A photoelectric transducer includes a wiring structure and a photoelectric conversion section provided on a substrate. The photoelectric conversion section includes a first electrode and a photoelectric conversion layer provided on the first electrode. The wiring structure includes a first wiring layer including a wiring pattern. The distance between the bottom face of the first electrode and the substrate is shorter than the distance between the bottom face of the wiring pattern and the substrate.
摘要:
A photoelectric conversion device according to an exemplary embodiment includes a pixel which includes a photoelectric conversion unit, a reset transistor, and an amplifier transistor that outputs a signal from the photoelectric conversion unit. The photoelectric conversion unit includes a first electrode, a second electrode, a photoelectric conversion layer, and an insulating layer disposed between the photoelectric conversion layer and the second electrode. The photoelectric conversion unit alternately performs an accumulation operation and a discharge operation in accordance with the voltage between the first electrode and the second electrode. In a period between two consecutive discharge operations among a plurality of discharge operations, a reset operation in which the reset transistor resets the voltage on the second electrode is performed a plurality of times.
摘要:
An image sensor includes a semiconductor substrate having first and second faces. The sensor includes a plurality of pixel groups each including pixels, each pixel having a photoelectric converter and a wiring pattern, the converter including a region whose major carriers are the same with charges to be accumulated in the photoelectric converter. The sensor also includes a microlenses which are located so that one microlens is arranged for each pixel group. The wiring patterns are located at a side of the first face, and the plurality of microlenses are located at a side of the second face. Light-incidence faces of the regions of the photoelectric converters of each pixel group are arranged along the second face such that the light-incidence faces are apart from each other in a direction along the second face.
摘要:
An image sensor includes a semiconductor substrate having first and second faces. The sensor includes a plurality of pixel groups each including pixels, each pixel having a photoelectric converter and a wiring pattern, the converter including a region whose major carriers are the same with charges to be accumulated in the photoelectric converter. The sensor also includes a microlenses which are located so that one microlens is arranged for each pixel group. The wiring patterns are located at a side of the first face, and the plurality of microlenses are located at a side of the second face. Light-incidence faces of the regions of the photoelectric converters of each pixel group are arranged along the second face such that the light-incidence faces are apart from each other in a direction along the second face.
摘要:
A photoelectric conversion device including: a photoelectric conversion unit; a storing unit configured to store a photoelectric conversion signal from the photoelectric conversion unit; a first amplifier transistor configured to output a photoelectric conversion signal from the storing unit; a transistor configured to write an output signal of the first amplifier transistor to a first terminal of a holding capacitor; a second amplifier transistor, a gate of which is connected to the first terminal, and which is configured to output a voltage in accordance with a voltage of the first terminal; and a control unit configured to switch a voltage of a second terminal of the holding capacitor.
摘要:
A pixel includes a first electrode, a second electrode facing to the first electrode in a first direction, and a third electrode disposed between the first and second electrodes. A photoelectric conversion layer is disposed on the electrodes. Signals for phase difference detection are read from the first and second electrodes. Furthermore, a signal for imaging is read from the third electrode.