Abstract:
Each of a plurality of pixels arranged in two dimensions includes a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit. The plurality of pixels includes a first pixel and a plurality of second pixels. At least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
Abstract:
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units.
Abstract:
A method of manufacturing a semiconductor apparatus, comprising forming a structure including an insulating layer on a substrate, and an electrode on the structure, forming an insulating first film covering the electrode and the structure, forming an opening in a projection, of the first film, formed by a step between upper faces of the electrode and the structure, to expose part of the upper face of the electrode as a first portion, forming a second film covering the first film and the first portion, forming a protective film in the opening by processing the second film, the protective film covering a side face defining the opening and the first portion and being not formed on an upper face of the projection, and forming a third film on the first film and the protective film by spin coating.
Abstract:
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units.
Abstract:
A method for forming a color filter array includes a step of exposing a photosensitive color filter film, a step of forming a color filter array from the color filter film by developing the color filter film using a developer, and a step of cleaning the color filter array while rotating the color filter array and moving a nozzle for spraying fluid containing liquid and gas above the color filter array in a direction intersecting with an axis of the rotation. The method reduces variation in thickness of a color filter that is generated in the cleaning step.
Abstract:
A method of manufacturing a solid-state image sensor is provided. The method comprises preparing a structure which is covered by a protective film, depositing a first material by using a first color filter material on the protective film, forming a first color filter from the first material, depositing a second material by using a second color filter material after the forming the first color filter and forming a second color filter from the second material. An upper surface of the protective film has a concave portion. A part of the first material enters the concave portion in the depositing the first material, the first material is patterned so as to form a member in the concave portion from the first material in the forming the first color filter and the second material covers the member in the depositing the second material.
Abstract:
At least one solid-state image pickup element includes a plurality of pixels that are arranged in a two-dimensional manner. Each of the plurality of pixels includes a plurality of photoelectric conversion units each including a pixel electrode, a photoelectric conversion layer disposed on the pixel electrode, and a counter electrode disposed such that the photoelectric conversion layer is sandwiched between the pixel electrode and the counter electrode. In one or more embodiments, each of the plurality of pixels also includes a microlens disposed on the plurality of photoelectric conversion units.
Abstract:
Each of a plurality of pixels arranged in two dimensions includes a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit. The plurality of pixels includes a first pixel and a plurality of second pixels. At least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
Abstract:
Each of a plurality of pixels arranged in two dimensions includes a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit. The plurality of pixels includes a first pixel and a plurality of second pixels. At least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
Abstract:
A method of manufacturing a solid-state image sensor is provided. The method comprises preparing a structure which is covered by a protective film, depositing a first material by using a first color filter material on the protective film, forming a first color filter from the first material, depositing a second material by using a second color filter material after the forming the first color filter and forming a second color filter from the second material. An upper surface of the protective film has a concave portion. A part of the first material enters the concave portion in the depositing the first material, the first material is patterned so as to form a member in the concave portion from the first material in the forming the first color filter and the second material covers the member in the depositing the second material.