Abstract:
A system comprises of a pulse oximeter and diffusing wave spectroscopy (DWS) apparatus to perform pulse oximetry measurements. To calculate oxygen saturation, the pulse oximeter utilizes a pulse wave which is measured by an apparatus other than the pulse oximeter itself. In one embodiment, the different apparatus mentioned above is the diffusing wave spectroscopy (DWS) apparatus.
Abstract:
A system comprises of a pulse oximeter and diffusing wave spectroscopy (DWS) apparatus to perform pulse oximetry measurements. To calculate oxygen saturation, the pulse oximeter utilizes a pulse wave which is measured by an apparatus other than the pulse oximeter itself. In one embodiment, the different apparatus mentioned above is the diffusing wave spectroscopy (DWS) apparatus.
Abstract:
Exemplary apparatus and methods are provided for analyzing a medium. The apparatus, which may be a diffusing wave spectroscopy apparatus, comprises a first beam splitter for splitting a light from the laser light source into an excitation light and a reference light. The excitation light is directed on to a first portion of the medium and then multiply scattered light is collected at a second portion of the medium, the second portion being different from the first portion. The reference light, which has been attenuated, is combined with the multiply scattered light and either a power spectrum or an autocorrelation function is calculated.
Abstract:
There is provided herewith an apparatus, probe, and method for the combination of near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). The apparatus, probe and method allow for the simultaneous detection of NIRS and DCS.
Abstract:
The present disclosure relates in general to Diffuse Correlation Spectroscopy system for obtaining an autocorrelation function, and more particular, to a correlator and method for controlling a sampling time period and data length used for calculating an autocorrelation function. The correlator may include, a sampling gate circuit which is open during a variable time period and provides a data sample, a correlation circuit which calculates a correlation function from the data sample provided from the sampling gate circuit, and a parameter determining circuit which determines a sampling time period to be used by the sampling gate circuit based on the correlation function.
Abstract:
The present disclosure relates in general to Diffuse Correlation Spectroscopy system for obtaining an autocorrelation function, and more particular, to a correlator and method for controlling a sampling time period and data length used for calculating an autocorrelation function. The correlator may include, a sampling gate circuit which is open during a variable time period and provides a data sample, a correlation circuit which calculates a correlation function from the data sample provided from the sampling gate circuit, and a parameter determining circuit which determines a sampling time period to be used by the sampling gate circuit based on the correlation function.
Abstract:
Exemplary apparatus and methods are provided for analyzing a medium. The apparatus, which may be a diffusing wave spectroscopy apparatus, comprises a first beam splitter for splitting a light from the laser light source into an excitation light and a reference light. The excitation light is directed on to a first portion of the medium and then multiply scattered light is collected at a second portion of the medium, the second portion being different from the first portion. The reference light, which has been attenuated, is combined with the multiply scattered light and either a power spectrum or an autocorrelation function is calculated.
Abstract:
There is provided herewith an apparatus, probe, and method for the combination of near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). The apparatus, probe and method allow for the simultaneous detection of NIRS and DCS.