Abstract:
A manufacturing method for making a plurality of microneedle arrays (MNAs) includes: dispensing a polymer resin into a plurality of wells of at least one mold by an automated dispenser comprising at least one dispensing nozzle; centrifuging the at least one mold to distribute the dispensed polymer resin within the plurality of wells of the at least one mold; curing, solidifying, and/or drying the polymer resin within the plurality of wells of the at least one mold; and removing individual molded MNA parts from the at least one mold with at least one electromechanical mover controlled by at least one computer processor. A mold for making a plurality of the MNAs and a high-throughput manufacturing system for making the MNAs using the mold are also provided.
Abstract:
A method of manufacturing a porous part includes controlled freeze casting of a slurry. After freezing, a solvent in the slurry is removed by sublimation and the remaining material is sintered to form the porous part. Spatial and temporal control of thermal conditions at the boundary and inside of the mold can be controlled to create parts with controlled porosity, including size, distribution, and directionality of the pores. Porous parts with near-net-shape from ceramics, metals, polymers and other materials and their combinations can be created.
Abstract:
A hybrid microneedle array and a method of fabricating the array is used for delivery of drugs, vaccines, and other therapeutic agents into tissues, including skin, heart, inner ear, and other tissues. The microneedle array can facilitate precise and reproducible intradermal delivery. Each microneedle has a dissolvable tip with a hollow body permitting the delivery of a variety of therapeutic agents into the skin. A fabrication process utilizes a two part mold to separately mold a dissolvable tip and a solid body portion of each microneedle in the array.
Abstract:
Apparatus and method for surgeon-assisted rapid surgical implantation of devices into soft tissue. The apparatus comprises several subsystems that enable the referencing of the spatial position and orientation of the device being implanted with respect to the soft tissue into which it is being implanted and then the controlled implantation of the device at a predefined speed with higher positional accuracy and precision and a reduction in soft tissue damage, provided by ultrasonic assisted motion, compared to current state-of-the-art implantation methods and devices. The method includes automated loading of the device being implanted into a clamping mechanism from a cartridge holding a number of implants, referencing of the device position and orientation, referencing of the surface of the tissue into which the device is being implanted, monitoring of the tissue motion, identification of desirable implant location based on the soft tissue profile, allowance of surgeon selection and fine adjustment of the final implant location, high-speed implantation, device release and implant actuator retraction.
Abstract:
A method of forming a microneedle array can include forming a sheet of material having a plurality of layers and micromilling the sheet of material to form a microneedle array. At least one of the plurality of layers can include a bioactive component, and the microneedle array can include a base portion and plurality of microneedles extending from the base portion.
Abstract:
A method and device for fabricating vascular networks in for tissue engineering. The vascular network is embedded in a porous scaffold and is created from a sacrificial wax template, according to one embodiment. A extrusion-based three dimensional printer is used to create the template, wherein the printer utilizes an extruder incorporating a mixer to maintain the consistency of the extrudate.
Abstract:
Provided herein are devices and methods used to produce tattoo biosensors that are based on spatially controlled intracutaneous gene delivery of optical reporters driven by specific transcription factor pathways for a given cytokine or other analyte. The biosensors can be specific to a given analyte, or more generically represent the convergence of several cytokines into commonly shared intracellular transcription factor pathways. These biosensors can be delivered as an array in order to monitor multiple cytokines. Biosensor redeployment can enable chronic monitoring from months to years. The tattooed biosensor array of the present invention includes endogenous reporter cells, naturally tuned to each patient's own biology and can be used to reliably measure the state of a patient in real-time.
Abstract:
A therapeutic delivery system uses an engineered extracellular vesicle-albumin hybrid carrier for curcumin, which is embedded in dissolvable microneedle arrays. The co-encapsulation of curcumin with albumin in extracellular vesicles extends curcumin's stability. The incorporation of therapeutic loaded carrier into microneedle arrays does not alter its cell uptake properties or bioactivity. Moreover, the bioactivity of therapeutic loaded carrier can be preserved for at least one year when encapsulated in microneedle arrays and stored under room temperature storage conditions. The microneedle arrays of the delivery system are fabricated using molding and casting processes. The extracellular vesicle carrier can be loaded using sonication.